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Hydrophobicity in Lennard-Jones solutions
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The analogue of the hydrophobic hydration is explored for Lennard-Jones solutions. The free

energy of solvation and its temperature derivatives, both in the constant-pressure process and in

the constant-volume process, are obtained numerically for a variety of the size and energy

parameters for the solute–solvent Lennard-Jones potential. We identify in the parameter space a

region in which the solvation is of hydrophobic character, with an understanding that

hydrophobicity is characterized by both the solvation free energy being positive and the solvation

process being exothermic. Such a region is found in each case of the isobaric and isochoric

conditions and the region is seen to be much wider in the isochoric process than in the isobaric

one. Its origin and implication are discussed.

1. Introduction

The hydrophobic effect is often considered as an essential

factor, combined with other effects, for the stability and

functionality of proteins and biomembranes in aqueous

environments. In a number of review articles and books on

water, hydrophobicity is always in the list of characteristic

properties of water.1–3 It is thus natural, and indeed common,

in molecular–theoretical attempts to study realistic models of

aqueous solutions, from which detailed, experimentally

inaccessible information is obtained;4,5 studying simple models

of water, or of solvent in general, is also of high value, for then

universal features or important physical implication often

obscured by details may be derived from such models.6–8

Our strategy here is similar in spirit to the latter: we study

simple liquid mixtures aiming to examine hydrophobicity from

a broader perspective. In particular, we try to identify

necessary macroscopic and microscopic conditions that allow

solvation of hydrophobic character to be realized in these

simple solutions.

An essential feature of the hydrophobicity of nonpolar

solutes in water is not the low solubility itself but the fact

that it becomes even lower as temperature is increased. The

characteristic temperature dependence means that the solvation

process in which a solute molecule is transferred from a gas or

liquid phase (phase a) to water (phase b) is exothermic: the low

solubility comes from some unfavorable entropy change in the

solvation process.9

The solvation free energy, enthalpy (or energy), and entropy

may be defined for the process transferring solute A from

phase a to phase b. When it is done with pressure p and

temperature T fixed as in the standard experimental condition,

the solvation Gibbs free energy is defined by

DG�p ¼ DGp � kT lnðrbA=r
a
AÞ; ð1Þ

where DGp is the Gibbs free energy change of the composite

system (phase a + phase b) in the process, raA and rbA are the

number densities of solute molecules in phases a and b, and k

is Boltzmann’s constant. The point is that the part of DGp that

merely comes from the difference in the solute density between

two phases, kTln(rbA/r
a
A), is subtracted from DGp, and so the

resulting DG�p contains essential information on the solvation.

Likewise the solvation entropy in the same process is

defined by

DS�p ¼ DSp þ k lnðrbA=r
a
AÞ; ð2Þ

where DSp is the entropy change of the composite system.

Note that DGp and DSp diverge in the infinite dilution limit

(rbA - 0) but DG�p and DS�p remain finite. The enthalpy change

DHp for the same process is the heat absorbed by the composite

system: e.g., the heat is released (i.e., DHp o 0) when a

hydrophobic solute is transferred from its own vapor phase

to water. The solvation Gibbs free energy is decomposed as

DG�p ¼ DHp � TDS�p : ð3Þ

The hydrophobic hydration is characterized by DG�p being

positive even though DHp is negative, or equivalently

DHpo0 and TDS�poDHp: ð4Þ

The origin of a net release of the heat has long been discussed.

A historical view is that the solvation is accompanied by the

enhancement of existing hydrogen bonds, or the formation of

new hydrogen bonds, between water molecules around a

solute.10 A modern theoretical study, however, indicates that

the hydrophobic effect is a result of the unusual equation of

state of water.11 Furthermore a simulation study shows that

the hydrophobic effect manifests itself for a model solvent

consisting of spherical particles with two characteristic

lengths,12 suggesting that the solvation of hydrophobic

character [eqn (4)] may be observed for a larger class of

liquid mixtures than naively expected. In fact, as we will see,

‘‘hydrophobic’’ solvation is observed for standard models of

liquid mixtures, namely the Lennard-Jones (LJ) fluid mixtures,

for certain sets of the interaction parameters. There are earlier

studies illustrating that analogues of the hydrophobic inter-

action are observed for solutes in square-well solvents13 and

Lennard-Jones solvents.14
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When the volume, instead of the pressure, of each phase is

fixed before and after the transfer of a molecule A, the process

is characterized by the solvation Helmholtz free energy DA�V ,
energy DUV, and entropy DS�V , where the subscripts V indicate

volume being fixed for the transfer. Definitions of DA�V and

DS�V are analogous to eqn (1) and (2): DA�V ¼ DAV �
kT lnðrbA=raAÞ and DS�V ¼ DSV þ k lnðrbA=raAÞ with DAV the

Helmholtz free energy change and DSV the entropy change of

the composite system for the isochoric process. Then

DA�V ¼ DUV � TDS�V : ð5Þ

The hydrophobicity in the constant-volume condition may be

defined by the following condition analogous to eqn (4):

DUVo0 and TDS�VoDUV ; ð6Þ

which means that the forced accommodation of a solute in the

solvent is energetically favorable but to a larger extent

entropically unfavorable.

One might expect that in the thermodynamic limit whether

the pressures are fixed or the volumes are fixed upon the

transfer of a solute A has little consequence for the solvation

thermodynamic quantities. However, that is not generally true

as carefully discussed in earlier studies.15–18 We illustrate

this point for methane in water using experimental data in

the following section, and then for the Lennard-Jones fluid

mixtures in the main part.

Section 2 summarizes the thermodynamics of the constant-

pressure and constant-volume solvation processes. In section 3

the simulation method including the free-energy calculation is

described. In section 4 the numerical results for the solvation

processes in the liquid mixtures are presented. We will see

there that which of p and V is fixed in the solvation process has

a profound effect on the manifestation of ‘‘hydrophobicity’’.

2. Constant-pressure and constant-volume

solvations

Let mex,A denote the excess chemical potential of species A

defined by

mex,A = �kTln(rA/zA), (7)

where zA is the activity of A defined such that zA - rA as

rA - 0. Then, for given thermodynamic states of phases a and
b before (or after) the transfer of a molecule A,

DA�V ¼ DG�p ¼ mbex;A � maex;A ¼ Dmex: ð8Þ

Note that the first equality is between DA* for the constant-V

process and DG* for the constant-p process, which are both

expressed as the difference in the excess chemical potential

between the two phases.

The ratio rA/zA of the density to the activity, or equivalently

e�mex,A/kT, of each phase is given by the potential distribution

theorem19

rA
zA
¼ he�C=kT i ð9Þ

where C is the interaction energy of molecule A fixed in space

with the remaining molecules and the average h� � �i is the

canonical ensemble average in which the remaining molecules

do not notice the existence of molecule A. Thus, in principle,

one can calculate Dmex by applying eqn (9) to the two phases.

When the two phases are in equilibrium, zaA = zbA and so, from

eqn (7)–(9), Dmex is obtained from an experimentally measurable

quantity (rbA/r
a
A)eq, the ratio of the equilibrium densities, as

Dmex = �kTln(rbA/raA)eq. (10)

In particular, when a is an ideal-gas phase of A (mex,
a
A = 0),

mbex,A = �kTln(rbA/raA)eq. (11)

When Dmex is decomposed into the energy (or enthalpy) and

entropy changes as in eqn (3) or (5), each term is dependent on

the process of transfer, i.e., what is fixed before and after the

transfer of a molecule A. The difference is given by

DS�p
k
� DS�V

k
¼ DHp

kT
� DUV

kT
¼ eb �V

b
A

kwb
� ea �V

a
A

kwa
; ð12Þ

where e and w are, respectively, the coefficient of thermal

expansion and the isothermal compressibility and �VA is the

partial molar volume of a molecule A. The difference comes

from the identity (qX/qNA)p,T � (qX/qNA)V,T � (qX/qV)T �VA

for an arbitrary thermodynamic variable X of each phase.

As an illustration, consider a system consisting of a methane

gas (phase a) and liquid water (phase b) at a pressure of 1 atm.

As the temperature is increased from 0 to 100 1C, the Ostwald

adsorption coefficient (rbA/r
a
A)eq of methane in water decreases

from 0.058 and then reaches a minimal value of 0.025 at

around at around 80 1C.20 The corresponding Dmex of methane

is given by eqn (10), which is positive and monotonically

increases with the temperature in the range. The DS�p is then

obtained from the identity

DS�p
k
� � @Dmex

@kT
þ Tðeb � eaÞ; ð13Þ

where the temperature differentiation is at fixed numbers of

molecules of methane and water in each phase and at fixed

pressure. However, when each phase is dilute in A, mex,A of

each phase is independent of the concentration rA of A and so

is Dmex. Thus, whether or not the number of molecules of

methane is fixed in each phase does not change the temperature

derivative of Dmex. So one can evaluate DS�p from the

temperature dependence of (rbA/r
a
A)eq at fixed pressure as

DS�p
k
¼ d

dT
½T lnðrbA=r

b
AÞeq� þ Tðeb � eaÞ: ð14Þ

With this and eqn (12), one can also evaluate DS�V .
Fig. 1 shows variations with the temperature of the solvation

thermodynamic quantities for methane in water at atmospheric

pressure. Plotted in Fig. 1a are Dmex/kT and the decomposed

elements. When Dmex/kT is decomposed into the enthalpy

change DHp/kT and the excess entropy change DS�p=k for the

process of transfer at fixed pressure, their variations over the

temperature range are found to be much larger than that of

Dmex/kT. At low temperatures near 0 1C, DHp/kT and DS�p=k
are both negative and large in magnitude; over the entire range

of temperature they are nearly linear functions of T with nearly

the same slope; and DHp/kT changes sign at a temperature

around 90 1C above which it is positive while DSp/k is
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negative. The last observation means that the constant-

pressure transfer of the hydrophobic molecule from its gas

phase to water at temperatures above 90 1C is unfavorable

both energetically and entropically. The mechanism of low

solubility there is different from that at low temperatures. Now

consider the constant-volume solvation processes for the same

equilibrium states at atmospheric pressure, that is, those in

which the initial or the final state of the system is in two-phase

equilibrium and the volume of each phase is fixed before and

after the transfer. As shown by dashed lines in Fig. 1a, the

energy change DUV/kT and the excess entropy change DS�V=k
are large and negative over the entire range of the temperature,

and DS�V=k is larger in magnitude than DUV/kT. That is, the

transfer with volume fixed is of hydrophobic character

even when the one with pressure fixed is not. The difference

ðDS�p � DS�V Þ=k is evaluated from eqn (12) with a being

practically an ideal gas:

eb �Vb
A/kw

b � 1.

The coefficient of thermal expansion eb and the isothermal

compressibility wb of water from 0 to 100 1C are taken from

experimental data21 and the partial molar volume of methane

in water is assumed to be 36.2 cm2 mol�1.22 The resulting

ðDS�p � DS�V Þ=k, or equivalently (DHp � DUV)/kT, is shown in

Fig. 1b. It increases monotonically with the temperature from

a negative value of �1.6 at 0 1C and changes it sign at around

10 1C where DS�p ¼ DS�V . The change of the sign with the

temperature variation is due to the coefficient of thermal

expansion of water changing sign at 4 1C.

3. Solvation thermodynamics of Lennard-Jones

mixtures

The model solutions we study here are Lennard-Jones

mixtures consisting of 500 solvent particles and a solute

particle A, all in a cubic box subject to periodic boundary

conditions. With s0 and e0 the LJ size and energy parameters

for pairs of solvent particles, temperature, pressure, and density

are given by T% = kT/e0, p
% = ps30/e0, and r% = rs30, and

the solute–solvent LJ interaction parameters are given by

s% = s/s0 and e% = e/e0, where superscripts % (not *)

indicate that quantities are in the LJ units. The LJ potential

functions, both between solvent particles and between solvent

and solute particles, are truncated at half the dimension of the

simulation cell. The long-range corrections to thermodynamic

quantities are made by the standard procedure.

The solvation free energy Dmex and other quantities of

interest are obtained as functions of s% and e%. The MC

simulations described below are performed for sets of

parameters (s%,e%) in the range 0.8 r s% r 2.0 with an

interval of 0.1 and in the range 0 o e% r 1.0 with 11 points.

The corresponding solute size would be in a range from

0.6 to 3.0 should it be evaluated by the Lorentz–Berthelot

rule. The gas phase from which A is transferred to the solvent

is taken to be ideal so that Dmex = mbex,A.
Numerical evaluation of Dmex is done by the thermodynamic

integration method,23 where the MC simulations are

performed for the systems with the potential

C(l) = C0 + lnCA, (15)

where C0 is the potential energy due to all the interactions

among solvent molecules andCA is the potential energy due to

the interactions between a solute molecule A and all the

solvent molecules; l is a coupling parameter ranging from

0 to 1 and n is in practice taken to be greater than 1. The excess

chemical potential is then given by

Dmex = n
R
1
0hln�1CAil dl, (16)

where h� � �il denotes the average with the potential C(l). This
formula is independent of the choice of ensembles; either the

canonical (NVT) or the isothermal–isobaric (NpT) MC

simulation can be employed. The Widom particle insertion

method, another standard method, was also employed for

solvation of small solutes, and we confirmed that the results

agree with those obtained from the thermodynamic integration

method. For large solutes, however, the particle insertion

method becomes impractical, and so the thermodynamic

integration method is used for all sets of potential parameters.

Numerical calculations of eqn (16) were carried out as

follows. The power n is set to 5 and the increment of l
to 0.05. Equilibrium configurations are generated by the

canonical MC and isothermal–isobaric MC simulations. The

Fig. 1 Solvation thermodynamic quantities of methane in water as

functions of temperature. The pressure is fixed at 1 atm. (a) Dmex/kT,
DHp/kT, DS�p=k, DHV/kT, DS�V=k. (b) ðDS�p � DS�V Þ=k, or equivalently
(DHp � DUV)/kT.D
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thermodynamic states examined are p% = 0.12, T% = 0.7

(close to the triple point) and p% = 1.13, T% = 0.7; the

corresponding densities of solvent particles when the solute A

is absent at those states are r% = 0.8507 and 0.900, and these

values are used as the input in the canonical MC simulations.

The number of MC steps at each thermodynamic state is

8 million for the canonical simulation and 25 to 65 million for

the isothermal–isobaric simulation. The average h� � �il in

eqn (16) is obtained from the above MC runs excluding the

first 50 thousand steps for equilibration and is numerically

integrated to give Dmex.
The enthalpy of transfer is

DHp = (qHb/qNA)p,T � (qHa/qNA)p,T. (17)

The first term is evaluated as enthalpy difference between the

system (phase b) with and without solute A at a common

pressure, which is obtained from the constant-NpT MC

simulations at l = 1 (the system with a solute A) and l = 0

(the system without A). The second term is simply kT, for a is

an ideal gas. The energy of transfer is

DUV = (qUb/qNA)V,T � (qUa/qNA)V,T. (18)

Again, the first term is evaluated as the difference in energy

between the system (phase b) with and without solute A at a

common volume, which is obtained from the canonical MC

simulation. The second term is zero, for a is an ideal gas.

Fig. 2 shows the constant-pressure solvation diagram in the

s%,e% plane, which indicates regions of low solubility

(Dmex > 0), high solubility (Dmex o 0), endothermic solvation

(DHp > 0), and exothermic solvation (DHp o 0). In the case of

p% = 0.12 as shown in Fig. 2a, the domain of Dmex > 0 and

that of DHp > 0 largely overlap each other, occupying large

s% and e o 1 regions. There is, however, a narrow region

(a shaded area in the figure) in which Dmex > 0 and DHp o 0,

i.e., the solvation has the essential character of hydrophobicity.

That region is found where s% o 1 and e% o 0.7. That is, the

necessary condition that an LJ solute particle in LJ solvent

particles be ‘hydrophobic’ is that the size of the solute particle

must be smaller than that of the solvent particles and the

strength of solute–solvent intermolecular interaction is smaller

than that of solvent–solvent ones. Solvation of various inert

gases in organic liquids shows a tendency that as the

size of solute species decreases the solvation free energy

Dmex increases and becomes positive while DHp remains

negative.24 This observation is consistent with the result

presented here for the LJ mixtures. Effects of the pressure

is seen from comparison of Fig. 2a with Fig. 2b. The

analogue of the hydrophobic hydration manifests itself in

a wider region of the s%,e% parameter space at the higher

pressure.

For the constant-volume solvation, regions of positive and

negative DUV as well as those of Dmex in the s%,e% plane are

displayed in Fig. 3. In the parameter space examined, the

constant-volume solvation is exothermic (DUV o 0) except in

the cases that the solute–solvent interaction parameter e% is

very small; on the other hand, the region of Dmex > 0 is the

same as the one under the constant-pressure condition as it

should be. Thus the low solubility with exothermic character

(Dmex > 0 and DUV o 0) under the fixed-volume condition is

observed in a wide range of the solute–solvent LJ parameter

space, in contrast to the one in the fixed-pressure condition. As

the solvent density is increased (Fig. 3b), the borders DUV = 0

and Dmex = 0 are shifted to the direction of large e%.

Contours of constant Dmex at p
% = 0.12 obtained from the

canonical ensemble MC simulations are shown in Fig. 4. The

corresponding contours obtained from the isothermal–isobaric

MC simulations were very similar to these, which supports the

numerical accuracy of the free-energy calculations. (Minor

discrepancies are seen at large values of s% where the finite-

size effect in the simulation becomes noticeable.) Broadly

speaking, Dmex is large at large s% and small e% and it is

small at small s% and large e%, as anticipated. When the

solute particle is identical with the solvent particles, i.e.,

s% = 1 and e% = 1, Dmex is negative. As e% is decreased

with s% being fixed at 1, Dmex increases and reaches a

maximum positive value at e% C 0.1, and then as e% goes

to 0, it rapidly decreases and approaches 0, as it should. Note

that a branch of contours of Dmex = 0 is the line of e% = 0

(as indicated by label ‘‘0’’ on the s% axis in Fig. 4), for the

solute with e% = 0 is non-interacting.

For the constant-pressure solvation process, Dmex is

decomposed to DHp and �TDS�p . To see their variations in

the s%, e% plane, contours of constant DHp and those of

constant TDS�p are plotted and displayed in Fig. 5a and b,

Fig. 2 Constant-pressure solvation diagram. (a) p% = 0.12,

T% = 0.7 (a state close to the triple point); (b) p% = 1.13,

T% = 0.7 (a high-pressure state).
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respectively. It is seen that the variation of DHp is similar to

that of Dmex. The value of DHp is large and positive when s% is

large and e% is moderately small while it is negative at

small s% and large e%. Variation of TDS�p in the s%,e%

plane is similar to that of DHp. DS�p is large and positive

when s% is large and e% is small (but not too small). Now

we note that DS�p ¼ ð@Sb
ex=@NAÞp;T � ð@Sb

ex=@NAÞp;T , where

Sex = S(rA) � Sid(rA); and Sa
ex = 0, for a is an ideal gas.

So DS�p ¼ ð@Sb
ex=@NAÞp;T , which is the solvation entropy of

phase b arising from the existence of solute A fixed in a space.

The microscopic expression for DS�p is then

DS�p ¼ k ln½WAðUAÞ=WðUÞ�; ð19Þ

i.e., the logarithm of the ratio of the number WA(UA) of

accessible states for the system with a solute particle A fixed in

space to the corresponding number W(U) for the system of

solvent particles alone, both under a common pressure. UA

and U are the average energies of the system with and without

the solute particle at the common pressure. When the solute is

identical to the solvent (s% = 1 and e% = 1), DS�po0, in

agreement with experimental observation that the solvation

entropies of inert gases in their own liquids are negative.25 In

order for a solute particle of the same size as a solvent particle

(s% = 1) to have DS�p ¼ 0, the solute–solvent interaction must

be weaker than the solvent–solvent interaction (e% C 0.6).

In the constant-volume solvation process, Dmex is decom-

posed to DUV and �TDS�V . The contours of constant DUV are

qualitatively different from those of constant DHp. As shown

in Fig. 6a, DUV is negative except at small values of e%, in

contrast to DHp which is positive in a major part of the

examined parameter space, and DUV becomes increasingly

negative as e% and s% increase. Likewise, variation of

TDS�V is strikingly different from that of TDS�p : compare

Fig. 6b with Fig. 5b. First, in contrast to DS�V being negative

Fig. 3 Constant-volume solvation diagram. (a) r% = 0.8507,

T% = 0.7 (p% = 0.12, a state close to the triple point);

(b) r% = 0.9000, T% = 0.7 (p% = 1.13, a high-pressure state).

Fig. 4 Contours of constant Dmex at p% = 0.12, T% = 0.7.

The number for each contour is the value of Dmex in units of e0.

Fig. 5 (a) Contours of constant DHp and (b) contours of constant

TDS�p . All the values in the figures are in units of e0.
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for any set of s% and e% in the examined ranges, DS�p
is positive for wide ranges of the LJ parameters. Second,

DS�V decreases, i.e., becomes more negative, with increasing

s% at fixed e% while DS�p increases and becomes more positive

as s% increases from 0.8 to 2 at fixed values of e% o 1.

As illustrations of ‘‘hydrophobic’’ and ‘‘hydrophilic’’

solutes, let us examine two solute species, A and B, with the

following LJ parameters: (A) s% = 0.9, e% = 0.54; (B)

s% = 1.0, e% = 0.5. We calculate Dmex,A and Dmex,B over a

temperature range from T% = 0.6 to 1.2 at p% = 0.12. In the

diagram in Fig. 2a, the LJ parameter set of species A is in the

narrow region in which Dmex,A > 0 and DHp o 0, i.e., the

solvation is of hydrophobic character, and the parameter set

of species B is outside that narrow region, where DHp is now

positive. The calculated Dmex,A/kT and Dmex,B/kT are both

positive in the temperature range, i.e., the solubility of these

solute species in the solvent is low; but their temperature

dependences contrast markedly with each other. Fig. 7 shows

the variation of Dmex,A/kT with temperature, where one can see

that Dmex,A/kT increases with T% until it reaches its maximum

value at around T% = 0.8 , i.e., the solubility of the LJ solute

A in the LJ solvent decreases with increasing temperature in

the low-temperature range and then turns to increase. This

temperature dependence of Dmex,A/kT is qualitatively the same

as that characterizing the hydrophobic hydration. In contrast,

Dmex,B/kT decreases monotonically with increasing the

temperature, i.e., the solubility increases with temperature.

The results for species A and B are consistent with the signs of

their DHp’s at T
% = 0.7.

From the constant-NpT MC simulations for obtaining

Dmex,A at each temperature, we also evaluated DHp directly,

and then obtained DS�p from Dmex,A and DHp. Fig. 8 shows

their variations with temperature: the solvation of species A is

such that DHp o 0 but Dmex,A > 0 at low temperatures

because TDS�p is even more negative than DHp while at high

temperatures DHp > 0 and Dmex,A > 0. That is, both DHp and

DS�p change their signs as T
% is varied in the range. Statistical

uncertainties in data points of DHp/kT and DS�p=k are within

�0.2, and those of Dmex,A/kT are within the size of data points.

Temperature dependences of Dmex,A and Dmex,B are

calculated also for the constant volume condition. When the

density is fixed to r% = 0.8507, the value at T% = 0.7 and

p% = 0.12, both Dmex,A/kT and Dmex,B/kT increase mono-

tonically with increasing T%. This result, too, is consistent

with the diagram in Fig. 3, for the LJ parameter sets for

species A and B are both in the ‘‘hydrophobic’’ region in the

constant-volume diagram.

Fig. 6 (a) Contours of constant DUV and (b) contours of constant

TDS�V . All the values in the figures are in units of e0.

Fig. 7 Variation of Dmex,A/kT with T%. The solute–solvent LJ

parameters are s% = 0.9, e% = 0.54. Dashed curve is a cubic fit to

the corresponding data points.

Fig. 8 Variations of DHp/kT and �DS�p=k with T%, together with

that of Dmex,A/kT. The solute–solvent LJ parameters are the same as in

Fig. 7. Dashed curves are parabolic fits to the corresponding data

points.
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Finally we note that, although so far DHp and DUV have

been evaluated directly from the MC simulations, one may use

eqn (12) with a being an ideal gas:

DHp � DUV ¼ kT
eb �V

b
A

kwb
� 1

" #
ð20Þ

Among these quantities, the ratio eb/wb, a property of the

solvent, is obtained from an accurate equation of state for the

LJ liquid26 through the thermodynamic identity:

eb

wb
¼ @p

@T

� �
r
: ð21Þ

The partial molar volume �Vb
A of solute A in phase b is given by

�V
b
A ¼

@Dmex
@p

� �
T

þ kTwb ð22Þ

with wb given by the equation of state and the pressure

derivative of Dmex approximated to be [Dmex(p+Dp) �
Dmex(p)]/Dp and evaluated from simulations at different

pressures. At T% = 0.7 and p% = 0.12, we find

DHp � DUV = 3.6, direct

DHp � DUV = 5.9, indirect

where the values are in units of e0. The first result is from direct

evaluation of DHp and DUV from the NpT and NVT MC

simulations and the second one is from eqn (20) with eqn (21)

and (22). The two do not agree very well. It is mainly due to

the statistical errors in evaluating �Vb
A from the two methods:

�Vb
A = 1.5 from eqn (22) while �Vb

A = 0.8 from the NpT

simulations with and without solute A in phase b.

4. Summary

In order to learn about the general features of the hydrophobic

hydration, we studied a model of simple liquids, namely, the

LJ solution. An essential feature of hydrophobicity is that the

solvation is energetically favorable but is entropically more

unfavorable in magnitude, as expressed by eqn (4) or (6). But

the entropic contribution to the solvation free energy Dmex
[eqn (8)] for transferring a solute from an ideal-gas phase a to a

solvent phase b depends on the thermodynamic condition, i.e.,

whether the pressures are fixed or the volumes are fixed for the

two phases.

This point was illustrated for the solvation of methane in

water. If the constant-pressure solvation is assumed,

DHp becomes less negative, i.e., the solvation becomes less

exothermic as temperature increases and the solvation

becomes energetically and entropically unfavorable at high

temperatures. On the other hand, if the constant-volume

solvation is assumed, the solvation is of hydrophobic character

over the entire temperature range. The difference DS�p � DS�V
changes its sign at around 10 1C because the coefficient of

thermal expansion of water changes its sign at 4 1C.

For estimation of DS�p � DS�V , or DHp � DUV, for the

solvation of more complex solutes, e.g., proteins, in solutions,

one must have an access to the partial molar volume of such

solutes as well as the coefficient of thermal expansion and

the compressibility of solutions. Experimental data of those

quantities are much needed.

For the LJ solution, we identified the solute–solvent LJ

parameters for which the solvation is of hydrophobic

character. For the isobaric solvation process, in the s%,e%

plane there is a narrow region of small s% and small e% in

which Dmex > 0 and DHp o 0, i.e., the solvation is analogous

to the hydrophobic hydration. For the isochoric process, in the

same parameter space, there is a wide ‘‘hydrophobic’’ region in

which Dmex > 0 and DUV o 0. The difference between the two

processes also manifests itself in the contrast between DHp and

DUV in the s%,e% plane (Fig. 5a and 6a) and in the contrast

between DS�p and DS�V (Fig. 5b and 6b).
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