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Thermodynamic expansion of nucleation free-energy barrier and size
of critical nucleus near the vapor-liquid coexistence

Kenichiro Kogaa) and X. C. Zeng
Department of Chemistry and Center for Materials Research and Analysis, University of Nebraska-Lincoln,
Lincoln, Nebraska 68588

~Received 28 September 1998; accepted 10 November 1998!

Nucleation free-energy barrier height and size of the critical nucleus are expanded in powers of the
chemical potential difference between the supersaturated vapor~or expanded liquid! in the
metastable state and the saturated vapor-liquid system in the stable equilibrium state at the same
temperature. The coefficients in the expansions are expressed in terms of the thermodynamic
properties at the stable equilibrium state. Comparisons with the results obtained from the
density-functional calculation for nucleation of the Lennard–Jones fluid show that systematic
improvement in predicting properties of the critical nucleus, either liquid droplet or vapor cavity, is
achieved by adding the higher order terms in the expansions. The scaling relations proposed by
McGraw and Laaksonen are found to be good approximations to the general expansion; in
particular, the barrier height displacement appearing in these scaling relations is naturally given as
the second order coefficient in the expansion of the barrier height. ©1999 American Institute of
Physics.@S0021-9606~99!50707-1#
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I. INTRODUCTION

A central concern in the development of theory of nuc
ation, either a phenomenological one or a molecular-ba
one, is the nucleation free-energy barrier heightW* , for this
quantity primarily controls the rate of nucleation.1 The cap-
illary drop model in the classical nucleation theory2 ~CNT!,
for example, expresses the barrier height in terms of sev
measurable macroscopic properties including the tensio
planner vapor–liquid interface. The latter quantity is a
sumed to be the same as the surface tension of the cr
nucleus; in other word, the Tolman length is assumed to
zero in the classical nucleation theory. Modern theory
nucleation, such as thei /v cluster theory and its derivativ
by Reiss and co-workers3 or the density-functional~DF!
theory of nucleation by Oxtoby and co-workers,4–6 offers a
molecular-based approach to obtainW* ~the Tolman length
can be given from DF approach as well!. These theories
reveal that the assumptions underlying the CNT are, in c
tain circumstances, invalid. In turn, these molecular-ba
theories stimulated new efforts in searching for better p
nomenological theories of nucleation.7–9 Recently, McGraw
and Laaksonen7 proposed a set of scaling relations for t
size of critical nucleusDn* , the nucleation barrier heigh
W* and their combination. According to their scaling rel
tion the true barrier heightW* differs from the CNT predic-
tion WCNT* by a function only of temperatureD(T) ~also
called the barrier height displacement!, that is, the difference
W* 2WCNT* depends neither on the nucleus size nor the
persaturation ratioS of vapor. Within the framework of DF
approach, they confirmed thatW* 2WCNT* only changes a
few percent at various supersaturations while the bar
height itself varies by an order of magnitude. In a later
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ticle, McGraw and Laaksonen8 discussed the physical bas
for the barrier height displacementD(T) using a nonuniform
spherical droplet model of the nucleus.

The advanced scaling relations by McGraw and La
sonen have made an important step towards developing
ter phenomenological theory of nucleation for describing
periments. Talanquer proposed a simple method to determ
D(T), that is,D(T) can be obtained by evaluatingWCNT* for
the critical nucleus at the spinodal. The spinodal is calcula
from the equation of state, obtained by fitting the experim
tal values of vapor pressure and binodal curve. Talanq
found that the McGraw–Laaksonen scaling relations i
prove the description of homogeneous nucleation for b
nonpolar and weakly polar systems. It seems that McGra
Laaksonen’s scaling relations indeed provide a simple ex
nation for reported systematic discrepancies between C
and measurements.10

However, it is fair to mention that the McGraw
Laaksonen scaling relations have been obtained as hom
neous solutions to a differential equation derived from
nucleation theorem~21! and a general form forW* .7,11Since
the homogeneity ansatz has not been proved in genera
remains unanswered why the scaling relations of McGr
and Laaksonen are overall successful. Furthermore, the
lowing two questions also need to be addressed: Can
scaling relations be derived and justified based on a m
rigorous theoretical foundation? Can the barrier height d
placementD(T) be given in terms of thermodynamic prop
erties at stable equilibrium state, rather than determi
based on the spinodal condition? In this regard, it is imp
tant to pursue the derivation ofW* and Dn* rigorously
based on the Gibbs theory of capillarity. In this article w
present thermodynamic expansions ofW* andDn* in pow-
ers of the chemical potential differenceDm between the su-
6 © 1999 American Institute of Physics
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persaturated and saturated vapor at a given temperature
show that the McGraw–Laaksonen scaling relations are
covered by considering only the second-order term in
expansion of W* as a correction to WCNT* . The
supersaturation-independent displacementD(T) is in fact
just the coefficient of the second-order term. The coefficie
in the expansion includingD(T) are expressed in terms o
the bulk and surface properties at the stable equilibrium s
of vapor-liquid coexistence. Among others, these proper
include the Tolman length12 and the fundamental lengt
characteristic of liquid proposed by Egelstaff and Widom13

In the next section, we derive the expansions of therm
dynamic formulas for the nucleation barrier heightW* and
the size of critical nucleusDn* . In Sec. III, we examine the
effects of truncation of the higher order terms in the exp
sions within the framework of the density functional theo
of vapor-liquid nucleation. Our concluding remarks a
given in Sec. IV.

II. EXPANSIONS OF NUCLEATION FREE-ENERGY
BARRIER HEIGHT AND THE SIZE OF CRITICAL
NUCLEUS IN POWERS OF THE CHEMICAL
POTENTIAL

We consider vapor-to-liquid and liquid-to-vapor nucl
ation of a single component fluid under a condition of fix
temperatureT. Here the nucleation barrier heightW* , which
is the work of formation of the critical nucleus, and the si
of the nucleusDn* , which is the excess number of mo
ecules in the critical nucleus over that present in the sa
volume in the surrounding bulk phase, are considered
functions only of the chemical potentialm of the system or
the differenceDm from that of the saturated vapor. In th
section we show thatW* andDn* can be expanded aroun
Dm50 and that the coefficients in the expansion are
pressed in terms of the bulk and surface properties at
stable equilibrium state.

A. Nucleation free-energy barrier height

We start from the formally exact expression for t
nucleation free-energy barrier height~or the work of forma-
tion! of the spherical critical nucleus14

W* 5
16pss

3

3~Dp!2 , ~1!

wheress is the surface tension with respect to the surface
tension andDp[pa2pb is the pressure difference betwee
the homogeneous liquid~a! and vapor phase~b! having the
same chemical potential; in the case of vapor-to-liquid nuc
ation (Dm.0), phase a is thermodynamically stable
whereas phaseb is metastable. Note that Eq.~1! is valid up
to the smallest critical nucleus. It is clear from Eq.~1! that
W* , a function ofDm, has the pole of second order atDm
50. Therefore a function ofDm defined by

g5W* ~Dm!2 ~2!

does not diverge atDm50. In general this function can b
expanded as
We
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g~x!5
1

2
C1Bx2Dx22(

i 51

`
Ai

i
xi 12, ~3!

wherex5Dm and

C52g~0!, ~4!

B5g8~0!, ~5!

D52
1

2
g9~0!, ~6!

Ai52
i

~ i 12!!
g~ i 12!~0!, ~7!

where8, 9, and (n) stand for, respectively, the first, secon
and nth derivatives with respect tox (5Dm). Once these
coefficients are obtained in terms of thermodynamic prop
ties at the vapor-liquid coexistence, the nucleation fr
energy barrier height is given as an explicit function ofDm:

W* 5
1

2
C~Dm!221B~Dm!212D2(

i 51

`
Ai

i
~Dm! i . ~8!

Systematic calculation of the coefficients can be carr
out in the following manner. Lety(x)5Dp and z(x)
5y(x)/x for convenience. Theng(x) is rewritten as

g~x!5
16pss

3

3z2 ~9!

and in general thenth derivative g(n)(x) is expressed in
terms ofss,ss8 , . . . ,ss

(n) and z,z8, . . . ,z(n). When we cal-
culate the limits ofg(x), g8(x), . . . ,g(n)(x) at x50, we use
the following relations~10!–~17!: First, sincez5y(x)/x and
y(0)50 the limits of the derivatives ofz and of y at x50
are related by the mathematical relation:

lim
x→0

z~n!5y~n11!~0!/~n11!, ~10!

including the casen50. Second, we have the following the
modynamic relations for the bulk properties:

y85S ]Dp

]m D
T

5Dr, ~11!

y95S ]2Dp

]m2 D
T

5Dr2x, ~12!

y~n12!5S ]n12Dp

]mn12 D
T

5~Dr2x!~n!, ~13!

where Dr5ra2rb is the density difference between th
two homogeneous phases andDr2x5(ra)2xa2(rb)2xb is
the difference in the product of square of density (r2) and
isothermal compressibility~x! between the two phases
Third, we have a thermodynamic relation for the surfa
properties,

lim
x→0

ss8/Dr52d` , ~14!

whered` is the Tolman length originally defined as the lim
of distance from the surface of tension to the equimolar
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viding surface asx→0.12 Equation~14! stems from two re-
lations about the adsorption at the surface of tension:12,14,15

~i! Gs52(]ss/]m)T and ~ii ! d`5 limDm→0 Gs /Dr. Herein-
after, we denote the surface tension and its derivativesx
50 @except the first derivative replaced by Eq.~14!# as s,
s9, etc. without the subscript s.

If we calculate the limits ofg(x), g8(x), . . . ,g(n)(x) as
x→0 using the relations~10!–~14! and then substitute th
limits into Eqs. ~4!–~7!, we obtain the desired thermody
namic expressions for the coefficients of the expansion of
nucleation barrier height. The first five coefficients are giv
as

C5
32ps3

3~Dr!2 , ~15!
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B52
16ps2

Dr Fd`1
1

3
D`G , ~16!

D5216psH Fd`1
1

2
D`G2

1
s2

2~Dr!2 Fs9

s
2

2~Dr2x!8

9Dr G J , ~17!

A15
16p

3 H Dr@d`12D`#Fd`1
1

2
D`G2

1
3s2

Dr Fs9

s
2

~Dr2x!8

3Dr GFd`1
1

2
D`G

2
s3

2~Dr!2 Fs-
s

2
~Dr2x!9

6Dr G J , ~18!
A252
32p

3 H ~Dr!2

s
D`Fd`1

5

4
D`GFd`1

1

2
D`G2

1
3s9

2 Fd`1
3

2
D`GFd`1

1

2
D`G

2
s~Dr2x!8

Dr
@d`1D`#Fd`1

1

2
D`G2

s2

Dr Fs-
s

2
~Dr2x!9

4Dr GFd`1
1

2
D`G

1
3s3

4~Dr!2 Fs9

s
2

~Dr2x!8

3Dr G2

1
s3

8~Dr!2 Fs99

s
2

2~Dr2x!-
15Dr G J , ~19!
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where the quantityD` is defined as

D`5
sDr2x

~Dr!2 ~20!

which has a dimension of length. Note that near the tri
point, ra@rb and (ra)2xa@(rb)2xb; thereforeD`'sxa,
which is the fundamental length characteristic of the liqu
proposed by Egelstaff and Widom.13 The quantities in Eqs
~15!–~20! are all defined at the stable equilibrium state
vapor-liquid coexistence (Dm50); the coefficients are
therefore functions only ofT.

Since W* is expressed in terms of the bulk proper
(Dp) and the surface property~s! of the system, the coeffi
cients of the expansion aboutDm50 consist of the deriva-
tives of the bulk and surface properties with respect
chemical potential atDm50. For example, expression of th
coefficientC includes the first derivative of the bulk pressu
asDr whereas the coefficientB contains the derivative of the
surface tension as2d`Dr and the second derivative of pre
sure asDr2x. In general a higher-order term’s coefficie
has higher-order derivatives of the bulk pressure and sur
tension with respect to the chemical potential.

B. Expansion of the size of critical nucleus

The size of critical nucleusDn* is defined as the exces
number of molecules in the critical nucleus over that pres
in the same volume in the homogeneous phase surroun
the nucleus. Unlike the number of molecules in the criti
e

f

o

ce

nt
ng
l

nucleus defined by introducing a dividing surface, the exc
Dn* is independent of the choice of the dividing surfac
The nucleation theorem16–18 gives a relationship betwee
Dn* andW* ,

S ]W*

]m D
T

52Dn* . ~21!

Note that Eq.~21! is a general thermodynamic relation a
proved by Oxtoby and Kashchiev.17 From the nucleation
theorem~21!, the expansion ofDn* is immediately obtained
from differentiating Eq.~8! with respect toDm as:

Dn* 5C~Dm!231B~Dm!221(
i 51

`

Ai~Dm! i 21. ~22!

Note also that the term (Dm)21 does not exist in the expan
sion.

Expanding f (x)[Dn* x352W* 8x3 as done forg(x),
the same coefficients forDn* are obtained. In particular, we
find f 9(0)50, which is consistent with that the term (Dm)21

does not exist in Eq.~22!. It should be noted, however, tha
the thermodynamic expression~17! for the coefficientD can-
not be obtained fromDn* @Eq. ~22!# to W* @Eq. ~8!# by
integration.

C. Relation with other phenomenological approaches

The expansions in Eqs.~8! and~22! for W* andDn* are
general thermodynamic results, for they are derived ba
solely on the Gibbs theory of capillarity and the nucleati
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theorem. The expansions are analogous to the virial exp
sion of the equation of state. One can expect better resul
more higher order terms are used. In fact, we found that
classical expressions for the barrier height and the size
critical nucleus and the scaling relations by McGraw a
Laaksonen are special forms of the general results.

First, the classical expression for the nucleation bar
height is recovered ifB50, D50, Ai50 for all i :

WCNT* 5 1
2 C~Dm!22, ~23!

whereC is given by Eq.~15!. ~Dr in C is usually replaced by
ra, which is reasonable near the triple point.! Under the
same condition, the classical expression forDn* ~the Kelvin
relation! is also recovered:

DnCNT* 5C~Dm!23. ~24!

Therefore, the capillary drop model in CNT is the zero
order approximation to the general expansions, which is o
exact in the limit asDm→0. This is analogous to the idea
gas approximation to the virial expansion of the equation
state.

Second, the McGraw and Laaksonen scaling relatio7

are recovered ifB50 andAi50 for all i . The scaling rela-
tion for Dn* is the same as the classical expression~24!.
From the nucleation theorem~21!, integrating Eq.~24! with
respect toDm gives rise to the scaling relation forW* . Here,
2D appears as an integration constant althoughD does not
exist in the CNT expression~23!. Furthermore, combining
the two scaling relations forDn* and W* results in the
scaling relation forW* /Dn* Dm. It has been shown7 that
results ofW* andDn* obtained from DF calculation follow
the scaling relations over a wide range ofDm if D is deter-
mined by the average displacementWCNT* 2W* . Recently,
Talanquer9 proposed that the constantD is determined from
the boundary condition thatW* 50 at spinodal. However
sinceBÞ0 andAiÞ0 in general, the McGraw–Laaksone
scaling relations are basically particular approximations
the general expansions. In principle,D should be determined
by Eq. ~17!. The reason why the McGraw–Laaksonen sc
ing relations are successful for a wide range ofDm will be
discussed in the next section.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the analytical results in Sec. II are exa
ined by numerical calculation of the Lennard–Jones mo
fluid based on the density-functional theory of nucleation4,5

The details of the DF approach to the LJ fluid nucleat
have been given elsewhere.5 The properties of the critica
nucleus are computed over a wide range ofDm ~from 21.2
to 1.8 in reduced units! at a fixed temperatureT near the
triple point (T* 50.7 in reduced units, corresponding in th
case of argon toT584 K). Note that the negativeDm corre-
sponds to the liquid-to-vapor nucleation or bubble formati

Determination of the coefficients in the expansion
quires the bulk and interfacial properties at the stable e
librium state (Dm50). The bulk properties such asDr2x
and higher derivatives ofDr2x with respect toDm are
n-
as
e

of
d

r

ly

f

s

o

l-

-
el

.
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obtained from the equation of state form(r,T) of the model
fluid5 through the thermodynamic relations:r2x
5(]m/]r)21, (r2x)852(]2m/]r2)(]m/]r)23, etc. Cal-
culation of the surface properties requires the density pro
of the inhomogeneous system. The surface tensions is ob-
tained by DF calculation of the planner interface. The deri
tives of surface tensions8, s9, s-, ands99 are evaluated
by fitting a polynomial to a set of data~Dm, ss).

19 The
Tolman lengthd` is determined froms8 ~the adsorption
route20 to d`). Substituting these results into Eqs.~15!–~19!
gives the coefficients. Table I summarizes the coefficie
together with the properties determining the coefficients. T
Tolman lengthd` and the fundamental lengthD` character-
istic of the liquid are comparable in magnitude and oppos
in sign.21 Therefore the sum@d`1kD`# with the factork of
order of 1 is very small. Thus, the coefficientB containing
the sum is much smaller thanC. For the same reason, th
terms having@d`1kD`# in Eqs.~17!–~19! are negligible for
determining the coefficientsD, A1 , andA2 . The coefficient
D is primarily determined by the term havings9 in Eq. ~17!,
coefficientA1 by s- in Eq. ~18!, and coefficientA2 by s99
in Eq. ~19!.

The expansion formula in Eq.~8! for W* is examined
through comparisons with results obtained from DF calcu
tion for the LJ fluid model. The quantity 2W* (Dm)2/C is
plotted in Fig. 1 againstDm in reduced units. The horizonta
lines in Fig. 1 correspond to prediction of the classical nuc
ation theory. The zeroth order approximation works bette
the case of vapor-to-liquid nucleation@Fig. 1~a!# compared to
liquid-to-vapor nucleation@Fig. 1~b!# due to the asymmetry
in 2W* (Dm)2/C. The first-order correction to CNT by in
troducing the linear term with coefficientB gives the correct
slope atDm50; however the range of its validity is as lim
ited as that of CNT. Inclusion of the second-order term w
coefficient D makes significant improvement to the firs
order approximation. Because of the parabola-like nature
2W* (Dm)2/C, the prediction of the second-order approx
mation agrees qualitatively well with the result obtain
from DF calculation over a whole range ofDm. The third-
order approximation by including the cubic term with coe
ficient A1 improves the second-order prediction little, b
causeA1 is much smaller thanD when compared in reduce

TABLE I. Thermodynamic properties at stable equilibrium of vapor-liqu
coexistence determining the coefficients in the thermodynamic expans
of the nucleation free-energy barrier height and the size of critical nucl
The primes denotes derivatives with respect to chemical potential at fi
temperature. The values are obtained from the density functional appr
to nucleation of the Lennard–Jones fluid. See the text for details. Temp
ture is 0.7 in reduced units. All the values are given in reduced units.

Coefficient Value Property Value Property Value

C 100.15 s 1.287 Dr 0.844
B 11.35 s8 0.131 Dr2x 0.066
D 29.00 s9 20.520 (Dr2x)8 20.038
A1 21.5a s- 0.272 (Dr2x)9 0.038
A2 269.2a s99 5.784 (Dr2x)- 20.091

d` 20.155 D` 0.120

aExpected numerical errors are about61 for A1 and640 for A2 due to the
uncertainty in determinings- ands99.
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units. Inclusion of the fourth-order term gives rise to an e
cellent agreement with the result of DF calculation within t
range:uDm* u<0.5 as shown by the solid curves in Figs. 1~a!
and 1~b!. However deviation from the DF result increas
rapidly in the range of largeDm. The scaling relation forW*
proposed by McGraw and Laaksonen does not have the
with coefficientB but does include the important term wit
coefficientD. This is the main reason why the scaling re
tion with a single parameterD ~besideC) significantly im-
proves CNT prediction over a wide range ofDm. However in
order to account for the asymmetrical feature
2W* (Dm)2/C, the inclusion of the term with coefficientB
is essential.

The expansion formula in Eq.~22! for Dn* is also ex-
amined through comparison with the DF result. The quan
Dn* (Dm)3/C is plotted againstDm in reduced unit in Fig. 2.
It is found thatDn* (Dm)3 varies only 15% over a whole
range ofDm. Therefore, the zeroth order approximation f
Dn* ~the Kelvin relation! corresponding to the horizonta
lines in Fig. 2 is a good approximation beyond a small ran
close toDm50. This is in contrast to the zeroth-order a

FIG. 1. Nucleation free-energy barrier heightW* multiplied by (Dm)2/C:
the density-functional result for the Lennard–Jones critical nucleus~black
circles!, the classical nucleation theory~the horizontal lines!, first ~dashed-
dotted lines!, second~dotted curves!, third ~dashed curves! and fourth~solid
curves! order approximation of the expansion formula. The coefficients
the expansion were obtained from the density functional calculation of
vapor–liquid interface at stable equilibrium and the critical droplets a
bubbles. Temperature is 0.7 in reduced units. All the values are in red
units.
-

rm

-

f

y

e

proximation ~CNT! for W* . Introduction of the first-order
term with coefficientB improves further the classical predic
tion and gives the correct slope atDm50. Improvement
made by the third-order term with coefficientA1 is found to
be insignificant as in the case forW* . The expansion up to
the fourth-order term with coefficientA2 betters the result in
a certain range up to60.4 @Figs. 2~a! and 2~b!#, but gives
rise to large errors for largeDm. These results show that th
scaling relation forDm, i.e., extension of the Kelvin relation
to a wide range ofDn* , is reasonable though inexact. Th
other scaling relations are also successful because they
derived from the scaling relation forDn* .

IV. CONCLUSION

The nucleation free-energy barrier heightW* and the
size of the critical nucleusDn* are expressed in powers o
the chemical potential differenceDm from the stable equilib-
rium state. The coefficients in the thermodynamic expans
are written in terms of the bulk and surface properties at
stable equilibrium state of the vapor-liquid coexistenc
Through comparisons with the density functional results,
have observed systematic improvement of the prediction
the expansion formulas as adding the higher order terms
for W* and Dn* . We have found that introduction of th

e
d
ed

FIG. 2. Size of the critical nucleusDn* multiplied by (Dm)3/C: the
density-functional result~black circles!, the classical nucleation theory~the
horizontal lines!, first ~dashed-dotted lines!, third ~dashed curves!, and
fourth ~solid curves! order approximation of the expansion formula. Th
conditions are the same as in Fig. 1. All the values are in reduced unit
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second order term with coefficientD is crucial to describe
the parabola-like behavior ofW* (Dm)2 over a wide range of
Dm. Asymmetry in the behavior ofW* (Dm)2 between
vapor-to-liquid and liquid-to-vapor nucleation is account
for by the first order term with coefficientB, which include
the sum of the Tolman length and the Egelstaff and Wid
fundamental length characteristic of liquid. For the behav
of Dn* (Dm)3, we have found that the zeroth order ter
alone is a good approximation beyond a small range ofDm.
Inclusion of the first order term with coefficientB accounts
for the asymmetry inDn* (Dm)3 and gives rise to more pre
cise prediction in a wide range ofDm.

From the general expansion formulas we can recover
scaling relations for the critical nucleus proposed
McGraw and Laaksonen via neglecting the first order co
ficient B and the third and higher order coefficients. Furth
more the parameterD(T) in the scaling relations is identifie
as the second order coefficient in the expansion ofW* and
can be given explicitly in terms of the thermodynamic pro
erties at the stable equilibrium. The scaling relation forDn* ,
corresponding to the zeroth order approximation to the
pansion, is indeed a reasonable approximation for both
droplet and bubble formation. Thus other scaling relatio
resulted from this relation through the nucleation theor
are also good approximations given that an appropriate v
for the parameterD(T) is known. However, the scaling re
lations do not account for any asymmetry in the behavior
W* (Dm)2 and Dn* (Dm)3; instead, they predict complet
symmetry of these quantities with respect toDm50 and re-
sult in d`52D`/3, a particular relation between the Tolma
length and the fundamental length characteristic of the
uid. However,W* (Dm)2 andDn* (Dm)3 obtained from the
DF calculation of the LJ fluid exhibit asymmetry betwe
droplet nucleation (Dm.0) and bubble formation (Dm
,0), and the relation betweend` andD` is rather given by
d`'2D` . Therefore, in general, the first-order term wi
coefficientB is necessary in order to describe asymmetri
features for the critical nucleus.
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