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Nucleation free-energy barrier height and size of the critical nucleus are expanded in powers of the
chemical potential difference between the supersaturated v@goexpanded liquid in the
metastable state and the saturated vapor-liquid system in the stable equilibrium state at the same
temperature. The coefficients in the expansions are expressed in terms of the thermodynamic
properties at the stable equilibrium state. Comparisons with the results obtained from the
density-functional calculation for nucleation of the Lennard—Jones fluid show that systematic
improvement in predicting properties of the critical nucleus, either liquid droplet or vapor cavity, is
achieved by adding the higher order terms in the expansions. The scaling relations proposed by
McGraw and Laaksonen are found to be good approximations to the general expansion; in
particular, the barrier height displacement appearing in these scaling relations is naturally given as
the second order coefficient in the expansion of the barrier heightl98@9 American Institute of
Physics[S0021-960809)50707-1

I. INTRODUCTION ticle, McGraw and Laakson@ndiscussed the physical basis
. for the barrier height displacemeb{(T) using a nonuniform
A central concern in the development of theory of nucle- ;
. . . %pherlcal droplet model of the nucleus.
ation, either a phenomenological one or a molecular-base The advanced scaling relations by McGraw and Laak-
one, is the nucleation free-energy barrier heigHt, for this v 1ing : y W :
sonen have made an important step towards developing bet-

quantity primarily controls the rate of nucleatibhe cap- _ : o
illary drop model in the classical nucleation thebfENT), ter phenomenological theory of nucleation for describing ex-

for example, expresses the barrier height in terms of sever@€fiments. Talanquer proposed a simple method to determine
measurable macroscopic properties including the tension & (T). thatis,D(T) can be obtained by eV"?"“at'WENT for
planner vapor—liquid interface. The latter quantity is as-the critical nucleus at the spinodal. The spinodal is calculated
sumed to be the same as the surface tension of the criticHlom the equation of state, obtained by fitting the experimen-
nucleus; in other word, the Tolman length is assumed to bé&l values of vapor pressure and binodal curve. Talanquer
zero in the classical nucleation theory. Modern theory offound that the McGraw—Laaksonen scaling relations im-
nucleation, such as thév cluster theory and its derivative Prove the description of homogeneous nucleation for both
by Reiss and co-worketsor the density-functionalDF) nonpolar and weakly polar systems. It seems that McGraw—
theory of nucleation by Oxtoby and co-workér8,offers a  Laaksonen’s scaling relations indeed provide a simple expla-
molecular-based approach to obt#iff (the Tolman length nation for reported systematic discrepancies between CNT
can be given from DF approach as wellhese theories and measurement8.

reveal that the assumptions underlying the CNT are, in cer- However, it is fair to mention that the McGraw—
tain circumstances, invalid. In turn, these molecular-basetlaaksonen scaling relations have been obtained as homoge-
theories stimulated new efforts in searching for better pheneous solutions to a differential equation derived from the
nomenological theories of nucleatiér® Recently, McGraw  nucleation theorert21) and a general form fow* .”*! Since

and Laaksonénproposed a set of scaling relations for the the homogeneity ansatz has not been proved in general, it
size of critical nucleusAn®, the nucleation barrier height remains unanswered why the scaling relations of McGraw
W* and their combination. According to their scaling rela- and Laaksonen are overall successful. Furthermore, the fol-
tion the true barrier heighty* differs from the CNT predic-  |owing two questions also need to be addressed: Can the
tion Weyr by a function only of temperatur®(T) (also  scaling relations be derived and justified based on a more
called the barrier height displacemgrthat is, the difference  rigorous theoretical foundation? Can the barrier height dis-
W* —Wg,r depends neither on the nucleus size nor the supjlacemenD(T) be given in terms of thermodynamic prop-
persaturation rati& of vapor. Within the framework of DF  grties at stable equilibrium state, rather than determined
approach, they confirmed tha* —Wgyr only changes a pased on the spinodal condition? In this regard, it is impor-
fev_v pe.rcent at_various supersaturation_s while the barriefant to pursue the derivation oV* and An* rigorously
height itself varies by an order of magnitude. In a later ar3seqd on the Gibbs theory of capillarity. In this article we
present thermodynamic expansionsVéf andAn* in pow-
dElectronic mail: koga@super2.unl.edu ers of the chemical potential differendgu between the su-
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persaturated and saturated vapor at a given temperature. We 1 A

show that the McGraw—Laaksonen scaling relations are re- g(x)= §C+ Bx—sz—E i—'x'”, 3)
covered by considering only the second-order term in the

expansion of W* as a correction toWgyr. The  wherex=Au and
supersaturation-independent displacemBr{il) is in fact

just the coefficient of the second-order term. The coefficients C=29(0), )
in the expansion including (T) are expressed in terms of B=g'(0), (5)
the bulk and surface properties at the stable equilibrium state

of vapor-liquid coexistence. Among others, these properties 1

include the Tolman lengti and the fundamental length D=-39%0), )
characteristic of liquid proposed by Egelstaff and Widbtm.

In the next section, we derive the expansions of thermo-
dynamic formulas for the nucleation barrier heighit and
the size of critical nucleuAn*. In Sec. lll, we examine the
effects of truncation of the higher order terms in the expan
sions within the framework of the density functional theory
of vapor-liquid nucleation. Our concluding remarks ar
given in Sec. IV.

i .
Ai:_(i+2)!g(l+2)(0)l (7)
where’, ", and(" stand for, respectively, the first, second,
and nth derivatives with respect t& (=Au). Once these
coefficients are obtained in terms of thermodynamic proper-
Cties at the vapor-liquid coexistence, the nucleation free-
energy barrier height is given as an explicit functionAgi:

1 A _
Wr*=ZC(Au) 24+B(Au) 1=D=> —(Au). (8
II. EXPANSIONS OF NUCLEATION FREE-ENERGY 2 ( ,u) ( ,u,) Zl | ( ,u) ®
BARRIER HEIGHT AND THE SIZE OF CRITICAL

NUCLEUS IN POWERS OF THE CHEMICAL Systematic calculation of the coefficients can be carried
POTENTIAL out in the following manner. Lety(x)=Ap and z(x)
=y(x)/x for convenience. Theg(x) is rewritten as

We consider vapor-to-liquid and liquid-to-vapor nucle-
ation of a single component fluid under a condition of fixed g(x)= 5 (9)
temperaturd. Here the nucleation barrier height*, which 3z
is the work of formation of the critical nucleus, and the sizegng in general thenth derivative g™ (x) is expressed in
of the nucleusA_n_*, which is the excess numbe_r of mol- terms ofog,al,... ’U(sn) andz,z' ... z™. When we cal-
ecules in the critical nucleus over that present in the samgjate the limits of(x), g' (%), . .. g™(x) atx=0, we use

volume in the surrounding bulk pha;e, are considered ag,e following relationg10)—(17): First, sincez=y(x)/x and
functions only of the chemical potential of the system or y(0)=0 the limits of the derivatives of and ofy atx=0
the differenceAu from that of the saturated vapor. In this 51 related by the mathematical relation:

section we show thatv* andAn* can be expanded around

1670

Ap=0 and that the coefficients in the expansion are ex- lim zZ™=y""Y(0)/(n+1), (10)
pressed in terms of the bulk and surface properties at the *~°
stable equilibrium state. including the case=0. Second, we have the following ther-
A. Nucleation free-energy barrier height modynamic relations for the bulk properties:
We start from the formally exact expression for the y,:(aAp) _ (11)
nucleation free-energy barrier heiglar the work of forma- p |+ P
tion) of the spherical critical nucletfs 2
4 (9 p
1670 . y :<<9_M2_) =Ap?x, (12)
" 303p)” @ '
an+2Ap
whereo is the surface tension with respect to the surface of — y("*2)= (W) =(Ap%x) ", (13
tension andAp=p“— p” is the pressure difference between T

the homogeneous liquitt) and vapor phasgg) having the  \here Ap=p—pf is the density difference between the
same chemical potential; in the case of vapor-to-liquid nucleg,,q homogeneous phases atg?y = (p®)2x*— (p#)2x? is
ation (Au>0), phasea is thermodynamically stable ihe gifference in the product of square of densipf)(and
whereas phasg is metastable. Note that EqL) is valid up  jsothermal compressibility(y) between the two phases.

to the smallest critical nucleus. It is clear from Ed) that Third, we have a thermodynamic relation for the surface
W*, a function ofAu, has the pole of second order & properties

=0. Therefore a function oAu defined by
, lim ol/Ap=—6., (14

does not diverge ah x=0. In general this function can be wheres,, is the Tolman length originally defined as the limit
expanded as of distance from the surface of tension to the equimolar di-
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viding surface ax— 0.1? Equation(14) stems from two re- 16702 1
lations about the adsorption at the surface of tenstdf® B=- Ap Ot zhxl, (16)
(i) Ts=—(dog/du)r and (i) o..=limy, oT's/Ap. Herein-
after, we denote the surface tension and its derivatives at _ 1 2
=0 [except the first derivative replaced by H44)] as o, D=-16mo)| o+ §A°°
o”, etc. without the subscript s. 5 . .,
If we calculate the limits of(x), g'(x), ....g™(x) as LA A 2(Ap“x) 17
x—0 using the relation§10)—(14) and then substitute the 2(Ap)?| o 9Ap '
limits into Egs. (4)—(7), we obtain the desired thermody- 2
. . - . 167 1
namic expressions for the coefficients of the expansion ofthe A =" { Ap[ 5, +2A.]| 6.+ =A..
nucleation barrier height. The first five coefficients are given 3 2
as 2 ” 2. N7
3 A 1
MLl LA Y 0 PN
Ap | o 3Ap 2
32770_3 0_3 O,/H (APZX)/I
37 & T28p7 0 68p ” 19
|
_ 3@ T S s ta 3 s 3a ] or ta
2 T ) o Z 0 ) E 0 T ) E 0 o E 0
GACTe PN (PSP
I el I v P vva | R
30_3 0'" A 2 112 0_3 O_/m 2(A 2. \m
N 2__( PX) i L (Ap“x) ’ (19
4(Ap)°| o 3Ap 8(Ap)°| o 15Ap
|
where the quantityp., is defined as nucleus defined by introducing a dividing surface, the excess
oA p2y An* is independent of the choice of the dividing surface.

YL (200  The nucleation theorelfi*® gives a relationship between
p An* and W*,
which has a dimension of length. Note that near the triple (HW*>
.

point, p®>p# and (p%)%x*>(pP)?x?; thereforeA..~ox?,

which is the fundamental length characteristic of the liquid I
proposed by Egelstaff and Widolh The quantities in Eqs. Note that Eq.(21) is a general thermodynamic relation as
(15—(20) are all defined at the stable equilibrium state ofproved by Oxtoby and Kashchié?.From the nucleation
vapor-liquid coexistence Nu=0); the coefficients are theorem(21), the expansion oAn* is immediately obtained

therefore functions only of. from differentiating Eq(8) with respect taA u as:
Since W* is expressed in terms of the bulk property

(Ap) and the surface property) of the system, the coeffi-
cients of the expansion aboitu =0 consist of the deriva-
tives of the bulk and surface properties with respect to 1 o
chemical potential aA x=0. For example, expression of the Note also that the termi{u) ™~ does not exist in the expan-
coefficientC includes the first derivative of the bulk pressure S|onl.E dinaf () =An*x3= —W* ' as d ¢
asAp whereas the coefficief contains the derivative of the the s;(r?waencér(]e?ﬁc(:i)gr;s fgx r)](* _are obt a)L(in:; Inongrtic():rlﬂg;) ’vve
surface tension as §.,Ap and the second derivative of pres- find £7(0)= 0, which is consistent with tha't theptermg)ll
sure asAp?y. In general a higher-order term’s coefficient '

has higher-order derivatives of the bulk pressure and surfact oeefhgfr;ggi;rtwilrr]nE:Cﬁi?r.elés\c;z;%lgo?fhZ(Z:tsgf,fik(liog\r/lg/igr:hat
tension with respect to the chemical potential. ) )
P P not be obtained fromAn* [Eq. (22)] to W* [Eq. (8)] by

integration

=—An*. (21

[

An*=C(Ap) 3+ B(A,u)‘erZl A(Ap)~t (22

B. Expansion of the size of critical nucleus

The size of critical nucleuAn* is defined as the excess C. Relation with other phenomenological approaches

number of molecules in the critical nucleus over that present  The expansions in Eq&3) and(22) for W* andAn* are
in the same volume in the homogeneous phase surroundirgeneral thermodynamic results, for they are derived based
the nucleus. Unlike the number of molecules in the criticalsolely on the Gibbs theory of capillarity and the nucleation
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theorem. The expansions are analogous to the virial expardABLE I. Thermodynamic properties at stable equilibrium of vapor-liquid
sion of the equation of state. One can expect better results § existence determining the coefficients in the thermodynamic expansions

hiah der t d. In fact f d that tho the nucleation free-energy barrier height and the size of critical nucleus.
more higher order erms are used. In ract, we foun a ?he primes denotes derivatives with respect to chemical potential at fixed

classical expressions for the barrier height and the size Qfmperature. The values are obtained from the density functional approach

critical nucleus and the scaling relations by McGraw andio nucleation of the Lennard—Jones fluid. See the text for details. Tempera-

Laaksonen are special forms of the general results. ture is 0.7 in reduced units. All the values are given in reduced units.
First, the classical expression for the nucleation barrier

height is recovered iB=0, D=0, A=0 for all i Coefficient Value  Property Value Property Value
L y c 10015 o 1.287 Ap 0.844
Went=3C(Aum) ™%, (23 B 1135 o' 0.131 ApPx 0.066
" 2 !
whereC is given by Eq(15). (Ap in C is usually replaced by 21 2 i:gao g 8:232 ((2223” 8:822
p%, which is reasonable near the triple pointinder the A, —69.2 a" 5.784 Ap%x)” —0.091
same condition, the classical expressionAor* (the Kelvin 8. —0.155 A, 0.120

relation is also recovered:
n #Expected numerical errors are abaul for A; and =40 for A, due to the

A”ENT: C(A,u,)fa. (24) uncertainty in determining”” ando"”.

Therefore, the capillary drop model in CNT is the zeroth
order approximation to the general expansions, which is onlybtained from the equation of state fatp, T) of the model
exact in the limit asA,u—>0 This is analogous to the ideal f|u|d5 through the thermodynamic re|ation5:p2X
gas approximation to the virial expansion of the equation of=(gu/dp) =%, (p%x)'=—(3?uldp?)(duldp) 3, etc. Cal-
state. culation of the surface properties requires the density profile
Second, the McGraw and Laaksonen scaling relafionsof the inhomogeneous system. The surface tensids ob-
are recovered iB=0 andA;=0 for all i. The scaling rela-  tained by DF calculation of the planner interface. The deriva-
tion for An* is the same as the classical expressipf). tives of surface tension’, ¢”, ¢, and¢”” are evaluated
From the nucleation theoref21), integrating Eq.(24) with by fitting a polynomial to a set of datéAu, o).*® The
respect taAu gives rise to the scaling relation fov*. Here,  Tolman lengths,. is determined froms’ (the adsorption
—D appears as an integration constant althobigtioes not  route?® to 6,.). Substituting these results into Eq$5)—(19)
exist in the CNT expressiof23). Furthermore, combining gives the coefficients. Table | summarizes the coefficients
the two scaling relations foAn* and W* results in the  together with the properties determining the coefficients. The
scaling relation forW*/An*Au. It has been shownthat  Tolman lengths, and the fundamental length,, character-
results ofW* andAn* obtained from DF calculation follow jstic of the liquid are comparable in magnitude and opposite
the scaling relations over a wide range/f if D is deter-  in sign? Therefore the sumis.,.+kA..] with the factork of
mined by the average displacement,—W*. Recently, order of 1 is very small. Thus, the coefficieBtcontaining
Talanquet proposed that the constabtis determined from  the sum is much smaller thad. For the same reason, the
the boundary condition that* =0 at spinodal. However, terms having 8., +KkA..] in Egs.(17)—(19) are negligible for
sinceB#0 andA;#0 in general, the McGraw—Laaksonen determining the coefficient®, A;, andA,. The coefficient
scaling relations are basically particular approximations ta is primarily determined by the term having in Eq. (17),
the general expansions. In princip[2,should be determined coefficientA; by ¢” in Eq. (18), and coefficieniA, by "
by Eq. (17). The reason why the McGraw—Laaksonen scal-in Eq. (19).
ing relations are successful for a wide rangeAgf will be The expansion formula in Eq8) for W* is examined
discussed in the next section. through comparisons with results obtained from DF calcula-
tion for the LJ fluid model. The quantityV®* (Ax)?/C is
plotted in Fig. 1 againshu in reduced units. The horizontal
I1l. NUMERICAL RESULTS AND DISCUSSION lines in Fig. 1 correspond to prediction of the classical nucle-
ation theory. The zeroth order approximation works better in
In this section, the analytical results in Sec. |l are exam+the case of vapor-to-liquid nucleatiphig. 1(a)] compared to
ined by numerical calculation of the Lennard—Jones modeliquid-to-vapor nucleatiorjFig. 1(b)] due to the asymmetry
fluid based on the density-functional theory of nucleafidn. in 2W* (Au)?/C. The first-order correction to CNT by in-
The details of the DF approach to the LJ fluid nucleationtroducing the linear term with coefficieBt gives the correct
have been given elsewhetélhe properties of the critical slope atA x=0; however the range of its validity is as lim-
nucleus are computed over a wide range\ef (from —1.2  ited as that of CNT. Inclusion of the second-order term with
to 1.8 in reduced unijsat a fixed temperatur@ near the coefficient D makes significant improvement to the first-
triple point (T*=0.7 in reduced units, corresponding in the order approximation. Because of the parabola-like nature of
case of argon t@ =84 K). Note that the negativu corre-  2W* (Ax)?/C, the prediction of the second-order approxi-
sponds to the liquid-to-vapor nucleation or bubble formationmation agrees qualitatively well with the result obtained
Determination of the coefficients in the expansion re-from DF calculation over a whole range dfu. The third-
quires the bulk and interfacial properties at the stable equierder approximation by including the cubic term with coef-
librium state A u=0). The bulk properties such asp?y  ficient A; improves the second-order prediction little, be-
and higher derivatives of\p?y with respect toAu are  causeA; is much smaller tha® when compared in reduced
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FIG. 1. Nucleation free-energy barrier height multiplied by (Aw)?%/C:
the density-functional result for the Lennard—Jones critical nuclblask
circles, the classical nucleation theofthe horizontal liney first (dashed- horizontal lineg, first (dashed-dotted lings third (dashed curves and
dotted line$, seconddotted curvek third (dashed curvesand fourth(solid fourth (solid curve$ order approximation of the expansion formula. The
curves order approximation of the expansion formula. The coefficients inconditions are the same as in Fig. 1. All the values are in reduced units.
the expansion were obtained from the density functional calculation of the

vapor—liquid interface at stable equilibrium and the critical droplets and
bubbles. Temperature is 0.7 in reduced units. All the values are in reduce
units.

FIG. 2. Size of the critical nucleudan* multiplied by (Aw)3/C: the
density-functional resultblack circleg, the classical nucleation theofthe

Broximation(CNT) for W*. Introduction of the first-order
term with coefficienB improves further the classical predic-
tion and gives the correct slope aAtu=0. Improvement
made by the third-order term with coefficieA is found to
be insignificant as in the case fv*. The expansion up to
the fourth-order term with coefficied, betters the result in
a certain range up ta-0.4 [Figs. 2a) and 2Zb)], but gives
rise to large errors for largau. These results show that the
scaling relation forA, i.e., extension of the Kelvin relation
8 a wide range ofAn*, is reasonable though inexact. The
other scaling relations are also successful because they are
derived from the scaling relation faxn*.

units. Inclusion of the fourth-order term gives rise to an ex-
cellent agreement with the result of DF calculation within the
range:|A u*|=<0.5 as shown by the solid curves in Figéa)l
and 1b). However deviation from the DF result increases
rapidly in the range of largA . The scaling relation foWw*
proposed by McGraw and Laaksonen does not have the ter
with coefficientB but does include the important term with
coefficientD. This is the main reason why the scaling rela-
tion with a single parametdd (besideC) significantly im-
proves CNT prediction over a wide range/fi. However in
order to account for the asymmetrical feature of
2W* (Aw)?/C, the inclusion of the term with coefficied
is essential. size of the critical nucleudan* are expressed in powers of
The expansion formula in Eq22) for An* is also ex- the chemical potential differendeu from the stable equilib-
amined through comparison with the DF result. The quantityrium state. The coefficients in the thermodynamic expansion
An*(Auw)3/C is plotted againshu in reduced unit in Fig. 2. are written in terms of the bulk and surface properties at the
It is found thatAn* (Ax)® varies only 15% over a whole stable equilibrium state of the vapor-liquid coexistence.
range ofAu. Therefore, the zeroth order approximation for Through comparisons with the density functional results, we
An* (the Kelvin relation corresponding to the horizontal have observed systematic improvement of the prediction of
lines in Fig. 2 is a good approximation beyond a small rangeghe expansion formulas as adding the higher order terms both
close toAu=0. This is in contrast to the zeroth-order ap- for W* and An*. We have found that introduction of the

IV. CONCLUSION

The nucleation free-energy barrier height* and the
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<0), and the relation betwee®, andA., is rather given by model fluids shows that the relatios, (T)=—kA..(T) wherek is a

5.~—A. . Therefore, in general, the first-order term with constant close to 1, holds at least for a rang€él afear the triple point

coefficientB is necessary in order to describe asymmetricabk (Ref. 23.
y Yy 2M. lwamatsu, J. Phys.: Condens. Matfer_173 (1994.

features for the critical nucleus. 23T, V. Bykov and A. K. Shchekir(unpublishedl



