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Freezing in one-dimensional liquids
Kenichiro Kogaa)

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

~Received 10 December 2002; accepted 5 February 2003!

Freezing of liquids in one dimension is studied by a lattice model that is an extension of the model
solvent of the hydrophobic attraction. The model in one dimension, which is exactly solvable,
exhibits a continuous phase change between a high-temperature disordered ‘‘liquid’’ state and a
low-temperature ordered ‘‘solid’’ state but also does exhibit a first-order freezing transition at some
finite temperature with either one of the two model parameters taken to be infinite. In this theoretical
framework the sharpness of the freezing in one dimension is expressed by a simple function of the
microscopic model parameters and thus is related with other macroscopic properties of the
substance. These results may account for continuity and discontinuity of the liquid and solid
reported for different one-dimensional substances. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1564049#
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I. INTRODUCTION

One-dimensional liquids and solids, both crystalline a
amorphous, can be found in cylindrical pores with little i
terconnection~e.g., MCM-411! and in cylindrical tubules
with well-defined diameter~e.g., the carbon nanotube2!, and
phase behavior of different substances confined to such p
or tubules is being extensively studied.3,4 To be sure, such a
real system is not in one dimension but in quasi-o
dimension ~e.g., the diameter is typically 1.6–10 nm fo
MCM-41 and 1–3 nm for the single-wall carbon nanotub!,
but for convenience we refer to such a real system as ‘‘o
dimensional’’ while we make a distinction between one
mension (d51) and quasi-one-dimension (1,d,2) when
we refer to some theoretical models.

Freezing and melting in equilibrium substances are
ways first-order transitions and the solid–liquid pha
boundary never terminates at a critical point so that ther
no continuity of the liquid and solid.5,6 There is no doubt tha
this holds for any bulk substances, although no rigoro
proof seems to be possible.6 However, this is not the case fo
one-dimensional systems (d51) or quasi-one-dimensiona
systems (1,d,2), as the Ising model or the correspondi
lattice-gas model does not have a first-order phase trans
at all if d,2. For real systems such as substances confine
a cylindrical pore, both gradual phase changes, which
similar to the phase transformation above the critical po
and abrupt phase changes, which are similar or virtu
identical to the first-order phase transition, are observed
experiments4,7 and computer simulations.8–10 We mean by
‘‘gradual’’ that there is a range of temperature~or of some
other field variable! over which appreciable changes occur
relevant properties that distinguish one state~e.g., solid!
from another~e.g., liquid!. The characteristic magnitude o
that range, or the sharpness of freezing, would then dep
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on intermolecular interactions of the system’s constitu
molecules. It would also depend on the spatial extent of
quasi-one-dimensional system, i.e., the width or diamete
the system, and the material surrounding or in contact w
the quasi-one-dimensional system.

We present here a lattice model of gradual freezing
such quasi-one-dimensional substances, which is an ex
sion of the model solvent in a theory of the hydrophob
attraction.11 In any number of dimension, the model can
mapped to the spin 1/2 Ising model and thus, in one dim
sion, it is exactly solvable, as the original version. Ind,2
dimensions with its parameters all finite, it exhibits a grad
phase change between a high-temperature disordered l
state and a low-temperature ordered solid state; howeve
either one of two model parameters is taken to be infinity
does exhibit a phase transition at a finite temperature.
main goal of this paper is to find in the model framewo
how the sharpness of freezing is related with the interm
lecular interaction and some other macroscopic proper
that characterize each substance.

In the following section we define the model, show
correspondence with the Ising model, and obtain explicit f
mulas for thermodynamic properties of the one-dimensio
system. In Sec. III we show the two limiting cases in whi
the freezing of the one-dimensional liquid takes place a
phase transition and also illustrate qualitatively how the c
tinuous phase behavior changes with changing the mo
parameters. In Sec. IV we define the sharpness of free
and obtain an explicit formula for it. Section V provide
numerical illustrations in connection with several substanc
The results are briefly summarized in Sec. VI. In an Appe
dix, we relate the model in one dimension with the on
dimensional KH2PO4 ~KDP! model,12 which exhibits a
phase transition at a finite temperature, showing that in
dimension, the KDP model too is mapped to the Ising mod

II. MODEL

The model is an extension of a lattice model for t
hydrophobic interaction,11 which consists of solvent~water!

u-
ic
3 © 2003 American Institute of Physics
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7974 J. Chem. Phys., Vol. 118, No. 17, 1 May 2003 Kenichiro Koga
and solute~hydrophobic! molecules. Now only the solven
part of the original model is considered, and that part is ta
to represent any kind of liquid—rather than the particu
liquid—with some orientation-dependent intermolecular
teraction.

A schematic picture of the model is shown in Fig.
Each molecule occupies one lattice site and may be in
one ofq states or orientations. There is one special orien
tion identified as state 1. Only neighboring molecules int
act with each other and the interaction energy depends
their orientations: Two neighboring molecules both in t
special orientation~state 1! interact with each other with in
teraction energyw; neighboring molecules only one of whic
is in the special orientation interact with each other w
energye.w; and neighboring molecules of which neither
in the special orientation interact with each other with ene
u.w. The parameters of this model are thenq21.0, u
2w.0, ande. The lowest pair interaction energyw may be
due to a directional bonding~e.g., the hydrogen bond in ic
or the covalent bond in crystal silicon! or any other mecha
nism. The higher energyu represents the pair interaction e
ergy that the majority of two neighboring molecules wou
have at high temperatures. The energye for two neighboring
molecules in the special and nonspecial orientations migh
greater or less thanu, and the sign and magnitude ofe2u
appropriate for a given substance are dependent on the
isotropic intermolecular interaction, for example, due to
shape of a nonspherical repulsive core of the molecule,
secondary directional bonding, and so on.

We consider that the system with almost all the m
ecules in the special orientation corresponds to a solid s
whereas the one with almost all the molecules in any ot
orientations corresponds to a liquid state. The two conditi
u2w.0 ande2w.0 are necessary for the lowest-ener
state to be the perfect solid state, in which every molecul
in the special orientation.

The difference between the original model11 and the
present model is that the former assumese5u whereas the
latter does not. With this generalization the model may
taken to represent a wider range of different intermolecu
interactions, and so different substances, than the orig
model represents. Yet the extended model is still exa
solvable in one dimension as shown below.@The assumption
e5u in the original model was perfectly reasonable beca
then the model represented water exclusively, and the
tinction other than the two states, hydrogen-bonding (w) and
nonbonding (u), was unimportant.#

Let N1 , N0 , andN be the number of molecules in th
special orientation, the number of molecules in any ot
orientation, and the total number of molecules, respectiv
Also let N11, N01, andN00 be the number of pairs of neigh

FIG. 1. The model one-dimensional liquid, with each molecule centere
a lattice site and in one ofq orientations. The horizontal orientation i
identified as the special orientation~state 1!.
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boring molecules both in the special orientation, the num
of neighboring pairs only one of which is in the special o
entation, and the number of neighboring pairs both in a
other orientations, respectively. Then the partition functionZ
is

Z5( e2(wN111eN011uN00)/kT

5(
0,1

~q21!N0e2(wN111eN011uN00)/kT, ~1!

where the first sum( runs over all theq orientations for each
molecule whereas the second sum(0,1 runs over state 1~the
special orientation! and state 0~any one of otherq21 ori-
entations! for each molecule; an additional factor (q21)N0

in the second sum is due to the degeneracyq21 for each
molecule in state 0. The summand in~1! may be expressed in
terms of N1 and N01 ~because of the identitiesN05N
2N1 , N005(CN02N01)/2, andN115(CN12N01)/2 with C
the coordination number!, and then the partition function is

Z5(
0,1

e2E/kT, ~2!

with

E5F2
C

2
~u2w!1kTQGN11

P

2
~u2w!N01

1FC

2
u2kTQGN, ~3!

where

P5112S e2u

u2wD , Q5 ln~q21!. ~4!

Thus this extended model is equivalent to an Ising s
model or to the corresponding one-component lattice ga
the original model is.13 With a choice that state 1~the special
orientation! corresponds to spin↑ ~the direction of the field!
in the Ising model, the external magnetic fieldH and the
spin–spin interaction energyJ in the Ising model are related
to u2w, Q, andP by

H5
C

4
~u2w!2

1

2
kTQ, J5

P

4
~u2w!. ~5!

For the one-component lattice gas with the interaction ene
2« and the dimensionless activityz, the correspondence is

«5P~u2w!, z5e2C(e2u)/kT/~q21!. ~6!

In one dimension, the exact calculation of the partiti
function Z is done by the standard transfer matrix method14

The transfer matrix is now

V5S a b

b cD ,

with

a5e2w/kT, b5e2e/kT1Q/2, c5e2u/kT1Q, ~7!

at
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and so ifl1 and l2 are the eigenvalues ofV the partition
function is Z5l1

N1l2
N . In the thermodynamic limitN

→`, only the larger eigenvalue,l1 , is significant so that

Z1/N5l15
c

2
@x111AX#, ~8!

where

x5
a

c
5e(u2w)/kT2Q, y25

b2

ac
5e2P(u2w)/kT,

X5~x21!214xy2. ~9!

If we now introduce a reduced temperature

T* 5
QkT

u2w
, ~10!

thenx andy2 are expressed as

x5expFQS 1

T*
21D G , y25exp@2PQ/T* #. ~11!

Thermodynamic properties are then calculated by diff
entiations of the partition function or the free energyf
52kT ln l1 per molecule. For the internal energyf
5U/N per molecule,

f5
]~ f /T!

]~1/T!
5u2

~u2w!x

x111AX
F11

x2122~P21!y2

AX
G ,

~12!

or in a reduced form

f* 5
f2w

u2w
512

x

x111AX
F11

x2122~P21!y2

AX
G .

~13!

For the entropys per molecule

s/k5
f2 f

kT
5

Qf*

T*
1 lnFx111AX

2x G . ~14!

We can also calculate the heat capacity per molecule, w
is, in a reduced form

c* 5
]f*

]T*
5

Q

T* 2
H f* ~12f* !

1

2xy2P~P11!Fx212S 12
1

PD ~y221!x1
P21

P11G
~x111AX!X3/2

J .

~15!

The average mole fractionr15^N1 /N& of molecules in the
special orientation is given by

r1512
] ln l1

]Q

512
1

x111AX
F11AX2

x~x2112y2!

AX
G . ~16!
Downloaded 16 Apr 2003 to 128.253.229.143. Redistribution subject to A
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This may be taken as the order parameter of the ph
change, and will be used later in defining the sharpnes
gradual freezing.

When the parameters are all finite and satisfy the rest
tions (q21.0, u2w.0, ande.w), the phase behavior in
the low- and high-temperature limits is immediately obtain
from these equations. In the limitT* →0, we havex→`,
AX.x, andy2/x50; then from~12! we find for the energy
per molecule thatf5w. In the same limit, from~14! and
~16!, we finds/k50 andr151. ~If e,w provided the other
two conditions are still satisfied, we would findf5e and
r15 1

2 in the low-temperature limit, which is not the state w
defined as ‘‘solid.’’! On the other hand, in the high
temperature limitT* →`, wherex51/(q21), y251, and
AX.x11, we find thatf.@(q21)/q#2u1(1/q2)w1@2(q
21)/q2#e, s/k. ln q, and r1.1/q. These are indeed wha
we can anticipate simply from a fact that occurrence of a
one of theq orientations is equally likely at highT.

III. CONTINUITY AND DISCONTINUITY

The microscopic parametersu2w and Q5 ln(q21) in
this model have direct connections with experimentally m
surable macroscopic properties of the system: The energy~or
enthalpy! and entropy changes on melting. This is seen m
clearly in the limite→`, or equivalentlyP→`, which cor-
responds to a constraint that any two neighboring molecu
must be either both in the special orientation or both not
the special orientation. In this limit,y250 andX5(x21)2

so that from Eq.~12!

f5u2
~u2w!x

x111A~x21!2 F11
x21

A~x21!2G . ~17!

Since x21 changes its sign atT5(u2w)/kQ or T* 51,
there is a discontinuity in energyf as a function of tempera
ture

f5H w ~T* ,1!

u ~T* .1!
. ~18!

That f5w when T,(u2w)/kQ indicates that below tha
temperature the system is in the perfect solid state in wh
every molecule in the system is in the special orientation
r151, as is verified from Eq.~16!. Thus we may identify

Tf5~u2w!/kQ, ~19!

with the freezing point, andu2w and kQ with the latent
heat and the entropy change per molecule upon the me
transition, respectively. From Eq.~14! again withy50 and
X5(x21)2, we find the corresponding discontinuity in th
entropy: s/k50(T* ,1) and s/k5Q(T* .1), as we ex-
pected.

The limit P→` corresponds to the coupling constantJ
→` or the reduced temperaturekT/J→0 in the Ising model
@see ~5!#. Thus, the phase transition observed at the fin
temperatureTf in this one-dimensional model withP infinite
is mapped to the phase transition as in the one-dimensi
Ising model atH50 andkT/J50. In the Appendix, we will
see that the same kind of mapping holds for the phase t
sition in the one-dimensional KDP model.12
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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As soon as we eliminate the constraint on the mut
orientations of any two neighboring molecules~i.e., if e is
taken to be finite!, the one-dimensional system no long
undergoes a phase transition, and so we lose the exact c
spondences ofu2w, kQ, and Tf with the latent heat, the
entropy change, and the freezing point; but we would s
find analogous correspondences:u2w with the difference in
energy between a high-temperature phase~liquid! and a low-
temperature phase~solid!, kQ with the corresponding differ-
ence in entropy, andTf with the temperature at which th
order parameterr151/2, i.e., the midpoint betweenr150
~liquid! and 1 ~solid!. Here and below, we shall callTf in
~19! the temperature of phase change if the phase chan
continuous. Notice thatT5Tf or T* 51 corresponds toH
50 in the underlying one-dimensional Ising model, as
seen from Eq.~5! with C52, whereupon the numbers of↑
and↓ spins are equal.

The following numerical illustration shows qualitative
that not onlye ~or P) but alsoq21 ~or Q) affect the conti-
nuity of liquid and solid states in one dimension. An exa
account of howP and Q change the sharpness of freezi
will be given in Sec. IV.

To start the numerical illustration with some physica
reasonable choice of parameter values, we first note thP
51 corresponds to the condition originally assumed in
model solvent~water!.11 Second, the original model in on
dimension withQ52.8 ~and with some particular values o
the other parameters! reproduces best the solubility of meth
ane inbulk water over the temperature interval 273–328 K15

If the parameter valueQ52.8 is chosen, the present mod
would have 23 J mol21 K21 as the entropy difference be
tween liquid and solid states, which is very close to the
tropy change inbulk water, 22 J mol21 K21, at the melting
point. In the following illustration, we useP51 and Q
52.8 as standard values, though now the one-dimensi
model represents not bulk but one-dimensional~or quasi-
one-dimensional! systems.

Figure 2 showsf* andc* as functions ofT* for each
of P51, 2, and 8 withQ52.8. It is clear from Fig. 2~a! that
the larger the parameterP ~with fixed Q) the sharper the
slope off* at T* 51. Equivalently, Fig. 2~b! shows that the
maximum of the specific heat increases and the position
the maximum approachesT* 51 with increasingP. When
P58 andQ52.8, these functionsf* (T* ) andc* (T* ) are
indistinguishable from a step function and a delta funct
(cmax* 55.13104), respectively, and so the phase change
then virtually a first-order phase transition. This is consist
with what we already saw in the asymptotic form~18! asP
→`.

Figure 3 showsf* andc* as functions ofT* with the
different values ofQ52.8, 5, and 12 and with a commo
value ofP51. It is now apparent that the larger the para
eterQ ~with fixed P) the sharper the slope off* at T* 51
and, equivalently, the higher the maxima ofc* . When Q
512 with P51, f* (T* ) andc* (T* ) become practically a
step function and a delta function (cmax* 51.23103), respec-
tively, just as they do whenP is large whileQ is not.

The limit Q→` ~at fixed P and T* ) means, from Eq.
~11!, that ~a! y2→0 and ~b! x→` ~if T* ,1) or 0 ~if T*
Downloaded 16 Apr 2003 to 128.253.229.143. Redistribution subject to A
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.1). The first limit ~a! leads to~18!, as we already saw
while the second limit~b!, too, gives rise to the same disco
tinuity or infinite sharpness of the phase change~even if y2

were fixed finite!. Thus we now know that in the limitQ
→` with fixed P the system undergoes a phase transition
T* 51 as in the limitP→` with fixed Q. This verifies the
numerical results forf* (T* ) andc* (T* ) with largeQ. We
also notice that the effect of increasingQ on the sharpness o
the phase change would be stronger than that of increasinP.
For increasingQ means both~a! and ~b! whereas increasing
P leads to~a! alone. We will see this in explicit expression
of the sharpness given in the following section; here we j
note that the two limitsP→` and Q→` have different
physical meanings, i.e., the former imposes an infinit
strong constraint on the mutual orientation of neighbor
molecules whereas the latter makes the ratio 1/(q21) of the
numbers of special to nonspecial orientations infinite
small.

IV. SHARPNESS OF FREEZING

In principle, the sharpness of the phase change can
measured from the temperature-dependence of any prop
relevant to the phase change such as the energy, the ent
the heat capacity, etc. We use the order parameterr1 and
measure the sharpness by a characteristic range of tem

FIG. 2. ~a! f* and ~b! c* as functions ofT* , with the parameter values
P51, 2, and 10 andQ52.8.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7977J. Chem. Phys., Vol. 118, No. 17, 1 May 2003 Freezing in one-dimensional liquids
ture in which the system undergoes much of the ph
change between liquidlike and solidlike states and outsid
which the system’s state remains either liquidlike or sol
like. With r1(T* ), such a quantitative measureDT* is de-
fined as

DT* 52S dr1

dT*
D

T* 51

21

52S dT*

dr1
D

r151/2

. ~20!

The derivative ofr1 is evaluated atT* 51, wherer151/2,
because it is the temperature around which the signific
phase change occurs and at which the first-order trans
would occur ifP→` or Q→`. As shown in Fig. 4,DT* is
a ‘‘distance’’ between the two temperaturesT1* and T0* at
each of whichr1 would be 1~all molecules in the specia
orientation! and 0 ~none in the special orientation!, respec-
tively, if r1 were a linear function ofT* tangential to the
actualr1(T* ) at T* 51.

From Eq. ~16! we obtain an involved expression o
dr1 /dT* as a functions ofT* , but if we evaluate this a
T* 51, wherex51 andy25exp(2PQ), we find for DT* a
simple analytical expression

DT* 5
4

Q
exp~2PQ/2!. ~21!

This is a main result for the sharpness of the freezing.
find from this that lnDT* decreases linearly with increasin
P for given Q and decreases more strongly, due to an ex
term 2 ln Q, with increasingQ for givenP. This verifies the

FIG. 3. ~a! f* and ~b! c* as functions ofT* , with the parameter values
Q52.8, 5 and 12 andP51.
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qualitative trends seen in the numerical results in Sec. III a
also confirms the earlier anticipation that the effect of
creasingQ is stronger than that of increasingP. For largeP
andQ

ln DT* ;2PQ/2, ~22!

so that the effects ofP andQ on DT* would be equivalent.
The range of the reduced temperatureDT* over which

much of the phase change occurs may also be identified
DT/Tf , the ratio of the range of temperatureDT to the tem-
peratureTf of phase change. In the actual temperature sc
we find from ~21! with ~10!

DT5
4Tf

Q
exp~2PQ/2!5

4~u2w!

kQ2
exp~2PQ/2!. ~23!

This means that theQ dependence ofDT ~with other param-
eters fixed! is even stronger than that ofDT* .

Instead of2dr1 /dT* in ~20!, we could have chosen
c* 5df* /dT* at T* 51 as a measure of the sharpness
the phase change. From~15! with T* 51, we find

c* ~T* 51!5
Q

4
ePQ/2F11S P

11ePQ/2D 2G , ~24!

which shows how the~reduced! heat capacity at the tempera
ture of the phase change increases with increasingP or Q.
When the productPQ is large, the second term in the squa
brackets in~24! is negligible, and so we then find

1/c* ~T* 51!.
4

Q
e2PQ/2. ~25!

This is identical withDT* in ~21!, the sharpness of the freez
ing defined in terms of the order parameterr1 . Thus, choos-
ing c* , instead ofdr1 /dT* , at T* 51 to define the sharp
ness of the phase change will not affect our conclusions.
could have also chosenc* at its maximum, instead of a
T* 51; it just results in a complicated expression, and do
not change our conclusions because the temperature at w

FIG. 4. Sketch ofr1 as a function ofT* ~when P51 andQ51) and the
sharpness of the phase changeDT* 5T0* 2T1* . On the line tangent to
r1(T* ) at T* 51, one hasr151 at T1* andr150 at T0* .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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c* is maximum is always close to, and withP or Q large is
essentially equal to, the temperature of phase changeT*
51.

V. NUMERICAL ILLUSTRATION

Now that the sharpness of freezingDT* is related to the
material-dependent model parameters via the simple ana
cal form ~21!, we estimate the magnitudes ofDT* for sev-
eral different sets of the parameter values, each set bein
connection with a real substance. Our purpose here is ne
to fit experimental results onDT* for ~quasi! one-
dimensional liquids, which are scarcely available, nor
make accurate prediction ofDT* for such substances but t
know how large or smallDT* might be if the model param
eters have some values in some connection with real
stances. Thus, we make such choice of parameter values
the simplest possible assumptions. First, for simplicity,
assume thatP51, or equivalentlye5u. This means that any
material-dependence inP is ignored and that the model i
now formally identical to the original model.@In generalP
might be greater or less than 1~i.e., e.u or e,u) depend-
ing on a material; but there is no obvious corresponde
betweenP and some macroscopic properties of the mate
and, though its microscopic significance is clear, there
not enough experimental results as yet for the required
croscopic information.# Second, we assumeQ5DS/k for
each substance, i.e., that the entropy differencekQ between
typical liquid and solid states for a one-dimensional su
stance is equal to the measured entropy changeDS in the
melting transition of the bulk substance. Finally, we assu
u2w5DH for each substance, whereDH is the measured
latent heat of the bulk substance. ThenTf5(u2w)/kQ
5DH/DS5Tf

b , whereTf
b is the melting point of a bulk sub

stance, and so the sharpness of the freezingDT(5TfDT* )
in units of degree K is also determined for each case.

With these assumptions, we evaluateDT* and DT for
water, ethanol, hydrogen sulfide, and silicon. For wa
(DS522 J mol21 K21, Tf

b5273 K!, we findDT* 50.4 and
DT5110 K. This magnitude ofDT means that the phas
change is nothing but the continuous one. For this mo
with the above assumptions, this also means that liquid ‘‘w
ter’’ in one dimension does not freeze at temperatures as
as 273 K2DT/2.220 K. For ethanol (DS531.6
J mol21 K21, Tf

b5159 K!, the corresponding results ar
DT* 50.16 and DT525 K; the phase change is muc
sharper in eitherDT* or DT, than for water; but there would
be still no doubt about the continuity of liquid and sol
states. For hydrogen sulfide (DS545.8 J mol21 K21, Tf

b

5187.6 K!, although the entropy of melting is only twice a
great as that of water, we findDT* 51.331024 and DT
50.02 K, an extremely narrow temperature range compa
to the previous two examples. When as in this case the m
nitude ofDT is as small as the typical precision in meltin
point measurements, the freezing is likely to be identified
a first-order phase transition. Finally, consider silicon (DS
5297.6 J mol21 K21, Tf

b51687 K! as an extreme case. W
then findDT* 51.931029 and DT53.231026 K. With
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this infinitesimal magnitude ofDT, the freezing of the one-
dimensional substance is practically a first-order phase t
sition.

The sharpness of freezing is also strongly dependen
P ~see Fig. 2!, and indeedDT* vanishes exponentially rap
idly with P as in ~21!. Had P50 @i.e., e2u52 1

2(u2w)
,0] been chosen in the above numerical illustration,DT for
‘‘hydrogen sulfide’’ would have been 49 K instead of 0.02
and for the other three cases would have been greater tha
K. On the other hand, withP52 @i.e., e2u5 1

2(u2w)
.0], DT would be 29 K for ‘‘water,’’ 3.8 K for ‘‘ethanol,’’
131025 K for ‘‘hydrogen sulfide,’’ and 5310214 K for
‘‘silicon.’’

These results mean that freezing or melting of a r
~quasi! one-dimensional substance may be either so grad
that one can see clearly the continuity of liquid and solid
so sharp that one cannot distinguish it from the first-or
transition, depending strongly on what the substance is.
sharpness of the phase changeDT of each substance ma
indeed be inferred from the enthalpy change~latent heat! and
the entropy change in the melting transition of the bulk su
stance. However, if we really wish to evaluateDT for a
given substance, we need some additional experimenta
theoretical data that can be used to determine the param
P for the substance.

VI. SUMMARY

The sharpness of the freezing in one-dimensional liqu
is related with the two microscopic model parametersP and
Q associated with, respectively, the energetic and entro
feature of the intermolecular interaction. In either limitP
→` or Q→` the model exhibits the first-order phase tra
sition at a finite temperatureTf5(u2w)/kQ with the energy
changeu2w and the entropy changekQ. With the product
PQ finite, the sharpness of the phase changeDT* ~i.e., melt-
ing or freezing! was expressed by the simple analytical fun
tion ~21! of P andQ.

In numerical illustration,DT* and DT ~in units of K!
were evaluated for several different sets of the param
values, each set being related to each of water, ethanol,
drogen sulfide, and silicon. Within the range of these para
eters the freezing behavior in one dimension is found to v
from an extremely gradual phase change~in the case of wa-
ter! to virtually a first-order phase change~in the case of
silicon!. This suggests that freezing of a~quasi! one-
dimensional liquid may be observed to be either continu
or discontinuous, strongly depending on the material. It
remarked that the sharpness of the phase change of a
stance in~quasi! one dimension may be inferred from th
latent heat and the entropy change in the melting transi
of the bulk substance.

The model is mapped to the Ising model in any dime
sion. In the Appendix, the extended one-dimensional K
model~one-dimensional Takagi model! is also mapped to the
one-dimensional Ising model, and then the corresponde
between the present model withP infinite and the one-
dimensional KDP model is established.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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APPENDIX: ONE-DIMENSIONAL KDP MODEL

We show a definite relation between the present mode
one dimension and the one-dimensional KDP model.12 The
latter model, a one-dimensional analog of the Slater K
model,16 was proposed by Nagle as a simplest example
presents a phase transition at some finite temperature,
indeed is an illuminating model as taken as an exercise
standard textbook.17 We first briefly define the one
dimensional KDP model and then relate this model to
one-dimensional Ising model.

The one-dimensional KDP model consists of a on
dimensional array of phosphate (PO4

32) groups that has a
pair of protons H1 ~and a single potassium ion K1 playing
no role in the model! between any two neighboring pho
phate groups. It is assumed that each pair of the pro
takes one of four possible configurations, which we here r
resent by←, →, ↑ and↓, and that the total energy of th
system is the sum of the pair interaction energies betw
two neighboring ‘‘arrows:’’ 0 if they are←← or →→; u
.0 if they are↑↑, ↑↓, ↓↑, or ↓↓; and1` otherwise.~Our
language defining the energy is different from the origin
one in which the total energy is the sum of phosphate gr
energies; but they are equivalent.! The partition function of
the system ofN molecules with the periodic boundary co
dition is ZN5212Nexp(2Nu/kT) because there are tw
ground states with energy 0 and 2N excited states with en
ergy Nu, and thus the internal energy per molecule is d
continuous atT5u/(k ln 2) in the thermodynamic limit.

To find a connection with the Ising model, first assign
finite energye.0 for two neighboring arrows one of whic
is either← or → and the other is either↑ or ↓. This modi-
fied model is the one-dimensional analog of the Tak
model.18 Second, classify arrows into two types: type 1 if←
or → and type 0 if↑ or ↓, and then letN1 and N0 be the
numbers of arrows of each type, respectively, and letN00,
N11, andN01 be the numbers of two neighboring arrows bo
being type 0, both being type 1, and one being type 0 and
other being type 1, respectively. Then the partition funct
ZKDP is expressed as

ZKDP5(
0,1

2N02N01/2e2(eN011uN00)/kT, ~A1!

where the sum(0,1 runs over the two types for each arrow
The factor 2N0 is the degeneracy for theN0 arrows of type 0
whereas the other factor 2N01/2 is the degeneracy for th
N01/2 domainsof type 1 arrows, for there are only two po
sible states for each domain~’’ ←←•••← ’’ or →→•••→ ’’ !
and there areN01/2 such domains. If we rewrite~A1! using
the identities amongN,N0 ,N1 ,N00,N11, and N01 @those
above Eq.~2!# with C52,
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ZKDP5(
0,1

e2E/kT, ~A2!

with

E5@2u1kT ln 2#N11@e2 1
22 1

2kT ln 2#N01

1@u2kT ln 2#N. ~A3!

Thus the one-dimensional Takagi model can be mapped
the Ising model via the relations

H5 1
2u2 1

2kT ln 2, J5 1
2e2 1

4u2 1
4kT ln 2. ~A4!

From the second relation, we find that the one-dimensio
KDP model, which is restored in the limite→1`, corre-
sponds to the Ising model with the coupling constantJ infin-
ity or the reduced temperaturekT/J zero; thus, the phase
transition at T5u/(k ln 2) in the one-dimensional KDP
model is mapped to the discontinuity in the magnetization
H50 in the one-dimensional Ising model atkT/J50. In
Sec. III, we saw exactly the same mapping as this for
phase transition in the model of freezing in one dimens
with the parameterP infinite. Thus, the present model withP
infinite has a close connection with the KDP model wh
both are in one dimension.

The close connection between the two models will
explicit if the energy of the ground state is taken to be 0
the model of freezing, i.e.,w50. It then follows from Eq.~5!
with C52 andQ5 ln(q21) that

H5 1
2u2 1

2kT ln~q21!, J5 1
2e2 1

4u. ~A5!

Comparing these with the relations~A4!, we find that the
one-dimensional Takagi model is identical with the model
freezing in one dimension withq53, except the last term,
2 1

2kT ln 2, in the second equation in~A4!, which is due to
the twofold degeneracy for each low-energy domain of ty
1 arrows in the former model. This difference will be irre
evant if e→`. Then, when both are in one dimension, t
KDP model~the Takagi model in the limite→`) is exactly
the same as the model of freezing withq53 andP infinity.

A unique feature of the present model is that there
another route to the phase transition in one dimension;
limit Q→`. The parameterQ or q is the entropic one rathe
than the energetic one (P or e), and the limitQ→` corre-
sponds not toJ→` but to an infinitely large change inH for
a given finite temperature change in the Ising model@see the
first relation in~5!#.

The two different ways of enabling the one-dimension
model to exhibit the phase transition may be illustrated in
transfer matrixV. If we now consider all theq states for each
molecule~without reducing them to the two states!, V is a
q3q matrix of the form

V5S a b ••• b

b c ••• c

A A � A

b c ••• c

D , ~A6!

where a5e2w/kT, b5e2e/kT, and c5e2u/kT, both b and c
being different from those in the reduced 232 matrix ~7!. In
the limit P→` ~i.e., e→`), b50, and soV is brought to
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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block-diagonal form. The 434 transfer matrix for the one
dimensional KDP model is also of block-diagonal form. O
the other hand, in the limitQ→` ~i.e., q→`), the size of
theq3q matrix becomes infinite in such a way that the ra
of the number of matrix elements that arec to the number
that area or b becomes infinity.
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