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Freezing in one-dimensional liquids
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Freezing of liquids in one dimension is studied by a lattice model that is an extension of the model
solvent of the hydrophobic attraction. The model in one dimension, which is exactly solvable,
exhibits a continuous phase change between a high-temperature disordered “liquid” state and a
low-temperature ordered “solid” state but also does exhibit a first-order freezing transition at some
finite temperature with either one of the two model parameters taken to be infinite. In this theoretical
framework the sharpness of the freezing in one dimension is expressed by a simple function of the
microscopic model parameters and thus is related with other macroscopic properties of the
substance. These results may account for continuity and discontinuity of the liquid and solid
reported for different one-dimensional substances.2@3 American Institute of Physics.

[DOI: 10.1063/1.1564049

I. INTRODUCTION on intermolecular interactions of the system’s constituent
molecules. It would also depend on the spatial extent of the
One-dimensional liquids and solids, both crystalline andquasi-one-dimensional system, i.e., the width or diameter of
amorphous, can be found in cylindrical pores with little in- the system, and the material surrounding or in contact with
terconnection(e.g., MCM-41) and in cylindrical tubules the guasi-one-dimensional system.
with well-defined diametefe.qg., the carbon nanotubeand We present here a lattice model of gradual freezing in
phase behavior of different substances confined to such porgsich quasi-one-dimensional substances, which is an exten-
or tubules is being extensively studigé8iTo be sure, such a sion of the model solvent in a theory of the hydrophobic
real system is not in one dimension but in quasi-oneattraction'! In any number of dimension, the model can be
dimension(e.g., the diameter is typically 1.6—10 nm for mapped to the spin 1/2 Ising model and thus, in one dimen-
MCM-41 and 1-3 nm for the single-wall carbon nanotybe sion, it is exactly solvable, as the original version.d# 2
but for convenience we refer to such a real system as “onedimensions with its parameters all finite, it exhibits a gradual
dimensional” while we make a distinction between one di-phase change between a high-temperature disordered liquid
mension (l=1) and quasi-one-dimension €{ld<2) when state and a low-temperature ordered solid state; however, if
we refer to some theoretical models. either one of two model parameters is taken to be infinity, it
Freezing and melting in equilibrium substances are aldoes exhibit a phase transition at a finite temperature. The
ways first-order transitions and the solid-liquid phasemain goal of this paper is to find in the model framework
boundary never terminates at a critical point so that there ifow the sharpness of freezing is related with the intermo-
no continuity of the liquid and solidt® There is no doubt that lecular interaction and some other macroscopic properties
this holds for any bulk substances, although no rigoroushat characterize each substance.
proof seems to be possitfiddowever, this is not the case for In the following section we define the model, show its
one-dimensional systemsi€1) or quasi-one-dimensional correspondence with the Ising model, and obtain explicit for-
systems (kd<2), as the Ising model or the corresponding mulas for thermodynamic properties of the one-dimensional
lattice-gas model does not have a first-order phase transitigsystem. In Sec. lll we show the two limiting cases in which
at all if d<2. For real systems such as substances confined tbe freezing of the one-dimensional liquid takes place as a
a cylindrical pore, both gradual phase changes, which arghase transition and also illustrate qualitatively how the con-
similar to the phase transformation above the critical pointfinuous phase behavior changes with changing the model
and abrupt phase changes, which are similar or virtualljparameters. In Sec. IV we define the sharpness of freezing
identical to the first-order phase transition, are observed i@nd obtain an explicit formula for it. Section V provides
experiment$’ and computer simulatiofs1° We mean by numerical illustrations in connection with several substances.
“gradual” that there is a range of temperatui@ of some The results are briefly summarized in Sec. VI. In an Appen-
other field variablgover which appreciable changes occur in dix, we relate the model in one dimension with the one-
relevant properties that distinguish one stéeg., solig ~ dimensional KHPO, (KDP) model;? which exhibits a
from another(e.qg., liquid. The characteristic magnitude of phase transition at a finite temperature, showing that in one
that range, or the sharpness of freezing, would then deperimension, the KDP model too is mapped to the Ising model.

IIl. MODEL
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boring molecules both in the special orientation, the number
of neighboring pairs only one of which is in the special ori-
entation, and the number of neighboring pairs both in any
other orientations, respectively. Then the partition func#on

FIG. 1. The model one-dimensional liquid, with each molecule centered atS
a lattice site and in one off orientations. The horizontal orientation is
identified as the special orientatigstate }. 7= 2 o (WNy g+ eNog+ UNg /KT

and solute(hydrophobi¢ molecules. Now only the solvent
part of the original model is considered, and that part is taken
to represent any kind of liqguid—rather than the particular
liquid—with some orientation-dependent intermolecular in-Where the first sunx runs over all they orientations for each
teraction. molecule whereas the second s, runs over state {the
A schematic picture of the model is shown in Fig. 1.Special orientationand state Jany one of otheq—1 ori-
Each molecule occupies one lattice site and may be in angntations for each molecule; an additional factoq 1)
one ofq states or orientations. There is one special oriental? the second sum is due to the degenergeyl for each
tion identified as state 1. Only neighboring molecules interMolecule in state 0. The summand(i) may be expressed in
act with each other and the interaction energy depends of¢ms of Ny and No; (because of the identitiedlo=N
their orientations: Two neighboring molecules both in the ™ N1, Noo=(CNo—No1)/2, andN;;=(CN;—Noy)/2 with C
special orientatioristate 1 interact with each other with in- the coordination numbgrand then the partition function is
teraction energyv; neighboring molecules only one of which
is in the special orientation interact with each other with ~ z=Y e E/kT 2
energye>w; and neighboring molecules of which neither is 0.1
in the special orientation interact with each other with energy;iin,
u>w. The parameters of this model are ther1>0, u
—w>0, ande. The lowest pair interaction energymay be
due to a directional bondinge.g., the hydrogen bond in ice
or the covalent bond in crystal silicbor any other mecha-

= 021 (q—1)Nog™ (WNy g+ eNog uNog) /KT B

P
Ni+ E(U_W)Nm

C
Ez[—g(u—w)+kTQ

nism. The higher energy represents the pair interaction en- n Eu— KTQ[N 3)
ergy that the majority of two neighboring molecules would 2 '

have at high temperatures. The eneegipr two neighboring

molecules in the special and nonspecial orientations might b\é/here

greater or less than, and the sign and magnitude ef-u —u

appropriate for a given substance are dependent on the an- P=1+2 u—_w> Q=In(q—1). (4

isotropic intermolecular interaction, for example, due to the
shape of a nonspherical repulsive core of the molecule, th€hus this extended model is equivalent to an Ising spin
secondary directional bonding, and so on. model or to the corresponding one-component lattice gas as
We consider that the system with almost all the mol-the original model i$2 With a choice that state (the special
ecules in the special orientation corresponds to a solid staterientatior) corresponds to spifi (the direction of the field
whereas the one with almost all the molecules in any othein the Ising model, the external magnetic figttland the
orientations corresponds to a liquid state. The two conditionspin—spin interaction energyin the Ising model are related
u—w>0 ande—w>0 are necessary for the lowest-energyto u—w, Q, andP by
state to be the perfect solid state, in which every molecule is

in the special orientation. _ 1 _P
H=—(u-w)— =z kTQ, J=-—(u—w). 5
The difference between the original motlelnd the 4( ) 2 Q 4( ) ©

present model is that the former assunaesu whereas the . . . .
) . o For the one-component lattice gas with the interaction energy
latter does not. With this generalization the model may be : . 2 .
e and the dimensionless activity the correspondence is

taken to represent a wider range of different intermolecular

interactions, and so different substances, than the original ¢=p(u—w), ¢=e “(cWkT/(q—1). (6)
model represents. Yet the extended model is still exactly . . ) N
solvable in one dimension as shown bel§¥ihe assumption In one dimension, the exact calculation of the partition

e=u in the original model was perfectly reasonable becauséunctionZ is done. by the standard transfer matrix metfibd.
then the model represented water exclusively, and the disthe transfer matrix is now
tinction other than the two states, hydrogen-bonding &nd

nonbonding (1), was unimportani. V= a b ,
Let Ny, Np, andN be the number of molecules in the b c
special orientation, the number of molecules in any othe(Nith
orientation, and the total number of molecules, respectively.
Also letNy;, No;, andNgg be the number of pairs of neigh- a=e VKT p=g KT+Q2 =g WKkT+Q 7
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and so ifA; and\, are the eigenvalues &f the partition
function is Z=AY+\Y. In the thermodynamic limitN
—oo, only the larger eigenvalua,,, is significant so that

C
ZMN=Ny=5[x+1+X], ®)
where
2
ngze(ufw)/kaQ y2:b_:efP(ufw)/kT
c ' ac '
X=(x—1)2+4xy>?. 9)
If we now introduce a reduced temperature
kT
T* =Q—, (10
u—w
thenx andy? are expressed as
1
x=exp[Q(T—*—1) . y’=exd —PQ/T*]. (11

Thermodynamic properties are then calculated by differ-

entiations of the partition function or the free enerfy
=—KkT In\; per molecule. For the internal energy
=U/N per molecule,

B a(fIT) B (u—w)x

B x—1-2(P—1)y?
= 5am X+ 14X

TR ]
(12

or in a reduced form

—w X x—1—-2(P—1)y?
¢*=¢ =1- 1+ Sk}
u-w X+ 1+ X X
(13
For the entropys per molecule
d—f Qo* X+ 1+ X
slk= kT~ 1= +In ox . (14
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This may be taken as the order parameter of the phase
change, and will be used later in defining the sharpness of
gradual freezing.

When the parameters are all finite and satisfy the restric-
tions (Q—1>0, u—w>0, ande>w), the phase behavior in
the low- and high-temperature limits is immediately obtained
from these equations. In the limit* —0, we havex— oo,
JX=x, andy?/x=0; then from(12) we find for the energy
per molecule thatp=w. In the same limit, from(14) and
(16), we finds/k=0 andp;=1. (If e<w provided the other
two conditions are still satisfied, we would finfl=e€¢ and
p1= 3 in the low-temperature limit, which is not the state we
defined as “solid.) On the other hand, in the high-
temperature limitT* —«, wherex=1/(q—1), y>=1, and

X=x+1, we find that¢p=[(q—1)/q]?u+ (1/g®)w+[2(q
—1)/g%]e, slk=Ingq, andp;=1/q. These are indeed what
we can anticipate simply from a fact that occurrence of any
one of theq orientations is equally likely at higf.

[II. CONTINUITY AND DISCONTINUITY

The microscopic parametets—w and Q=In(g—1) in

this model have direct connections with experimentally mea-
surable macroscopic properties of the system: The eriergy
enthalpy and entropy changes on melting. This is seen most
clearly in the limite—o0, or equivalentlyP— oo, which cor-
responds to a constraint that any two neighboring molecules
must be either both in the special orientation or both not in
the special orientation. In this limig2=0 andX=(x—1)?

so that from Eq(12)

o (u—w)x 14 x—1 17
o=u x+1+Vx=12| Jx=1)?2|

Since x—1 changes its sign af=(u—w)/kQ or T*=1,
there is a discontinuity in energy as a function of tempera-
ture

(18

Cw (Tr<1)
_{u (T*>1)

We can also calculate the heat capacity per molecule, whicithat ¢=w when T<(u—w)/kQ indicates that below that

is, in a reduced form

a¢*  Q

==y | )
2xy2P(P+1)| 242 1- = | (y2= 1)xt b
Rdiinn & S| (2- 1x+ 5o

(x+ 1+ X)X
(15)

The average mole fractiop;=(N;/N) of molecules in the
special orientation is given by

1 dlIn N
P1= 19Q
1 X(x—1+2y?)
—1-——— |1 - —— 16
W TR (10

temperature the system is in the perfect solid state in which
every molecule in the system is in the special orientation or
p1=1, as is verified from Eq(16). Thus we may identify

Ti=(u—w)/kQ, (19

with the freezing point, andi—w and kQ with the latent
heat and the entropy change per molecule upon the melting
transition, respectively. From E@l4) again withy=0 and
X=(x—1)?, we find the corresponding discontinuity in the
entropy: s’k=0(T*<1) and s’/k=Q(T*>1), as we ex-
pected.

The limit P—oo corresponds to the coupling constant
— o or the reduced temperatukd/J— 0 in the Ising model
[see(5)]. Thus, the phase transition observed at the finite
temperaturd ¢ in this one-dimensional model witR infinite
is mapped to the phase transition as in the one-dimensional
Ising model atH =0 andkT/J=0. In the Appendix, we will
see that the same kind of mapping holds for the phase tran-
sition in the one-dimensional KDP mod#l.
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As soon as we eliminate the constraint on the mutual '
orientations of any two neighboring moleculé=., if € is 1
taken to be finitg the one-dimensional system no longer
undergoes a phase transition, and so we lose the exact corre-
spondences ofi—w, kQ, and T; with the latent heat, the
entropy change, and the freezing point; but we would still
. . . . > 05 .
find analogous correspondencas: w with the difference in
energy between a high-temperature phidiseid) and a low-
temperature phagsolid), kQ with the corresponding differ-
ence in entropy, and; with the temperature at which the
order parametep,;=1/2, i.e., the midpoint betweep, =0
(liquid) and 1 (solid). Here and below, we shall call; in L
(19) the temperature of phase change if the phase change is 0 1 2
continuous. Notice thal=T; or T*=1 corresponds tdd (a) L
=0 in the underlying one-dimensional Ising model, as is
seen from Eq(5) with C=2, whereupon the numbers of
and | spins are equal.

The following numerical illustration shows qualitatively P=8
that not onlye (or P) but alsog— 1 (or Q) affect the conti-
nuity of liquid and solid states in one dimension. An exact
account of howP and Q change the sharpness of freezing N
will be given in Sec. IV. ©

To start the numerical illustration with some physically 10
reasonable choice of parameter values, we first noteRhat
=1 corresponds to the condition originally assumed in the
model solventwatep.!* Second, the original model in one
dimension withQ= 2.8 (and with some particular values of 0
the other parameterseproduces best the solubility of meth- 1 2
ane inbulk water over the temperature interval 273—-328K. (b) ™
If the parameter ValuiQ__zlﬁ Is chosen, the present model FIG. 2. (8 ¢* and(b) c* as functions ofT*, with the parameter values
would have 23 Jmol® K™+ as the entropy difference be- P—1, 2, and 10 an@=2.8.
tween liquid and solid states, which is very close to the en-
tropy change irbulk water, 22 J mol! K1, at the melting

point. In the following illustration, we usé®=1 andQ  >1). The first limit (a) leads to(18), as we already saw,
=2.8 as standard values, though now the one-dimensionglhile the second limitb), too, gives rise to the same discon-
model represents not bulk but one-dimensiof@l quasi- tinuity or infinite sharpness of the phase chafeeen if y2
one-dimensionalsystems. were fixed finitg. Thus we now know that in the limiQ
Figure 2 showsp* andc* as functions off* for each .« with fixed P the system undergoes a phase transition at
of P=1, 2, and 8 withQ=2.8. It is clear from Fig. @) that  T*=1 as in the limitP—o with fixed Q. This verifies the
the larger the parametd? (with fixed Q) the sharper the numerical results fop* (T*) andc* (T*) with large Q. We
slope of¢* at T* =1. Equivalently, Fig. ) shows that the also notice that the effect of increasi@gon the sharpness of
maximum of the specific heat increases and the position ofhe phase change would be stronger than that of incre&sing
the maximum approacheB” =1 with increasingP. When  For increasingQ means botia) and (b) whereas increasing
P=8 andQ=2.8, these functiong*(T*) andc*(T*) are P leads to(a) alone. We will see this in explicit expressions
indistinguishable from a step function and a delta functionof the sharpness given in the following section; here we just
(Cra=5.1x10%, respectively, and so the phase change isote that the two limitsP—co and Q—c have different
then virtually a first-order phase transition. This is consistenphysical meanings, i.e., the former imposes an infinitely
with what we already saw in the asymptotic fofdB) asP strong constraint on the mutual orientation of neighboring
—00, molecules whereas the latter makes the ratig3/{) of the
Figure 3 showsp* andc* as functions ofT* with the  numbers of special to nonspecial orientations infinitely
different values ofQ=2.8, 5, and 12 and with a common small.
value of P=1. It is now apparent that the larger the param-
eterQ (with fixed P) the sharper the slope @* atT*=1
and, equivalently, the higher the maxima df. When Q

30

20

IV. SHARPNESS OF FREEZING

=12 with P=1, ¢*(T*) andc*(T*) become practically a In principle, the sharpness of the phase change can be
step function and a delta functios},,= 1.2x 10°), respec- measured from the temperature-dependence of any property
tively, just as they do wheR is large whileQ is not. relevant to the phase change such as the energy, the entropy,

The limit Q—o (at fixed P and T*) means, from Eq. the heat capacity, etc. We use the order parametesnd
(11), that (a) y>—0 and (b) x— (if T*<1) or 0 (if T* measure the sharpness by a characteristic range of tempera-
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Q=12 AT

0 1 2 ¥
(a) - 0 ! |

30 T

FIG. 4. Sketch ofp, as a function ofT* (whenP=1 andQ=1) and the
sharpness of the phase chang@*=T;—T7 . On the line tangent to
20 | 4 p1(T*) atT* =1, one hap,;=1 atT; andp,;=0 atTj .

Q=12

10 - . qualitative trends seen in the numerical results in Sec. Il and
also confirms the earlier anticipation that the effect of in-
creasingQ is stronger than that of increasify For largeP
andQ

0
(b) L 2 In AT*~—PQ2, (22)

FIG. 3. (& ¢* and(b) c* as functions of T*, with the parameter values so that the effects dP andQ on AT* would be equivalent.
Q=2.8, 5 and 12 an®P=1. The range of the reduced temperatd&&* over which
much of the phase change occurs may also be identified with
AT/T;, the ratio of the range of temperatukd to the tem-
ture in which the system undergoes much of the phas@eratureT; of phase change. In the actual temperature scale,
change between liquidlike and solidlike states and outside o€ find from (21) with (10)
which the system’s state remains either liquidlike or solid-

like. With p,(T*), such a quantitative measufer™ is de- AT= ﬂexq— PQ/2)= Mexq— PQ2). (23
fined as Q kQ?
. dpy | " dT* This means that th@ dependence ok T (with other param-
AT*=— T =1 (200 eters fixed is even stronger than that afT*.
T*=1 py=1/2 Instead of —dp,/dT* in (20), we could have chosen

The derivative ofp, is evaluated al* =1, wherep,;=1/2, Cc*=d¢*/dT* at T*=1 as a measure of the sharpness of
because it is the temperature around which the significarthe phase change. Fro(®5) with T* =1, we find

phase change occurs and at which the first-order transition

would occur ifP—o or Q—co. As shown in Fig. 4AT* is cH(Tr=1)= gePle
a “distance” between the two temperatur&$ and T§ at 4

each of whichp; would be 1(all molecules in the special ) )
orientation and 0(none in the special orientatipnrespec-  Which shows how théreduced heat capacity at the tempera-

tively, if p, were a linear function offi* tangential to the turé of the phase change increases with increaBimg Q.

actualpy(T*) at T* =1. When the_ prodL_JcPQ is I_arge, the second term_m the square
From Eq.(16) we obtain an involved expression of Prackets in(24) is negligible, and so we then find

dp,/dT* as a functions ofl*, but if we evaluate this at 4

T*=1, wherex=1 andy?=exp(—PQ), we find for AT* a Uc* (T*=1)=—e P2 (25)

simple analytical expression Q

1+ , (24

P 2
1+ ePQ’Z)

4 This is identical withAT* in (21), the sharpness of the freez-
AT* =—exp(—PQ/2). (22 ing defined in terms of the order paramepgr Thus, choos-
Q ing c*, instead ofdp,/dT*, at T* =1 to define the sharp-
This is a main result for the sharpness of the freezing. Weness of the phase change will not affect our conclusions. We
find from this that INAT* decreases linearly with increasing could have also chosec* at its maximum, instead of at
P for given Q and decreases more strongly, due to an extrd™* =1; it just results in a complicated expression, and does
term —In Q, with increasingQ for given P. This verifies the  not change our conclusions because the temperature at which

Downloaded 16 Apr 2003 to 128.253.229.143. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



7978 J. Chem. Phys., Vol. 118, No. 17, 1 May 2003 Kenichiro Koga

c* is maximum is always close to, and wikhor Q large is  this infinitesimal magnitude oA T, the freezing of the one-
essentially equal to, the temperature of phase chaifge dimensional substance is practically a first-order phase tran-
- sition.

L The sharpness of freezing is also strongly dependent on
P (see Fig. 2 and indeedAT* vanishes exponentially rap-
idly with P as in (21). Had P=0 [i.e., e—u=—3(u—w)

< 0] been chosen in the above numerical illustratidi, for

Now that the sharpness of freeziag™* is related to the “hydrogen sulfide” would have been 49 K instead of 0.02 K,

material-dependent model parameters via the simple analytfind for the other three cases would have been greater than 49
: : K. On the other hand, witlP=2 [i.e., e—u=3(u—w)

cal form (21), we estimate the magnitudes A&fT* for sev- : P L= - )

eral different sets of the parameter values, each set being i 0]- AT would be 29 K for “water,” 3.8 K for "ethanol,

connection with a real substance. Our purpose here is neithdr< 10 ° K for “hydrogen sulfide,” and 5<10° ™ K for

to fit experimental results omAT* for (quasj one-  Siicon.

dimensional liquids, which are scarcely available, nor to These rgsults mean that freezing or me,'“”g of a real
make accurate prediction &fT* for such substances but to (4uas) one-dimensional substance may be either so gradual

know how large or smalAT* might be if the model param- that one can see clearly the continuity of liquid and solid or
eters have some values in some connection with real sus® sharp that one cannot distinguish it from the first-order

stances. Thus, we make such choice of parameter values wilfgnsition, depending strongly on what the substance is. The
the simplest possible assumptions. First, for simplicity, weSharPness of the phase chanjé of each substance may

assume thaP =1, or equivalentlye=u. This means that any ndeed be inferred from the enthalpy chariggent heatand
material-dependence iR is ignored and that the model is the entropy change_ in the meltmg transition of the bulk sub-
now formally identical to the original modefln generalP SFance. However, if we really wish tc_).evaluameT for a
might be greater or less than(ile., e>u or e<u) depend- 9IVen ;ubstance, we need some addltlona! experimental or
ing on a material; but there is no obvious correspondenc@eoret'cal data that can be used to determine the parameter

betweenP and some macroscopic properties of the material” O the substance.
and, though its microscopic significance is clear, there are
not enough experimental results as yet for the required mi-
croscopic informatior]. Second, we assum@=AS/k for  \,; SUMMARY
each substance, i.e., that the entropy differeki@ebetween
typical liquid and solid states for a one-dimensional sub-  The sharpness of the freezing in one-dimensional liquids
stance is equal to the measured entropy chakh§en the s related with the two microscopic model parameterand
melting transition of the bulk substance. Finally, we assume&) associated with, respectively, the energetic and entropic
u—w=AH for each substance, wherteH is the measured feature of the intermolecular interaction. In either linfit
latent heat of the bulk substance. Th&p=(u—w)/kQ —o0 or Q—oo the model exhibits the first-order phase tran-
=AH/AS=T?, whereT? is the melting point of a bulk sub- sition at a finite temperatur®; = (u— w)/kQ with the energy
stance, and so the sharpness of the freeaiig=T;AT*) changeu—w and the entropy chandeQ. With the product
in units of degree K is also determined for each case. P Q finite, the sharpness of the phase chaadé (i.e., melt-
With these assumptions, we evalua@* and AT for  ing or freezing was expressed by the simple analytical func-
water, ethanol, hydrogen sulfide, and silicon. For watettion (21) of P and Q.
(AS=22 Jmolrt K1, T?= 273 K), we findAT*=0.4 and In numerical illustration AT* and AT (in units of K)
AT=110 K. This magnitude oAT means that the phase were evaluated for several different sets of the parameter
change is nothing but the continuous one. For this modelalues, each set being related to each of water, ethanol, hy-
with the above assumptions, this also means that liquid “wadrogen sulfide, and silicon. Within the range of these param-
ter” in one dimension does not freeze at temperatures as lowters the freezing behavior in one dimension is found to vary
as 273 K-AT/2=220 K. For ethanol £S=31.6 from an extremely gradual phase chargethe case of wa-
Jmolt K1, T?z 159 K), the corresponding results are ter) to virtually a first-order phase chanda the case of
AT*=0.16 and AT=25 K; the phase change is much silicon). This suggests that freezing of @uas) one-
sharper in eitheAT* or AT, than for water; but there would dimensional liquid may be observed to be either continuous
be still no doubt about the continuity of liquid and solid or discontinuous, strongly depending on the material. It is
states. For hydrogen sulfideA6=45.8 Jmol* K™%, T?  remarked that the sharpness of the phase change of a sub-
=187.6 K), although the entropy of melting is only twice as stance in(quas) one dimension may be inferred from the
great as that of water, we findT*=1.3x10* and AT latent heat and the entropy change in the melting transition
=0.02 K, an extremely narrow temperature range comparedf the bulk substance.
to the previous two examples. When as in this case the mag- The model is mapped to the Ising model in any dimen-
nitude of AT is as small as the typical precision in melting sion. In the Appendix, the extended one-dimensional KDP
point measurements, the freezing is likely to be identified asnodel(one-dimensional Takagi mode$ also mapped to the
a first-order phase transition. Finally, consider silicahS(  one-dimensional Ising model, and then the correspondence
=297.6 Jmol! K~%, TP=1687 K) as an extreme case. We between the present model wif infinite and the one-
then findAT*=1.9x10 °® and AT=3.2x10 ® K. With dimensional KDP model is established.

V. NUMERICAL ILLUSTRATION
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Thus the one-dimensional Takagi model can be mapped onto
APPENDIX: ONE-DIMENSIONAL KDP MODEL the Ising model via the relations
We show a definite relation between the present modelin  H=2u—2kTIn2, J=3e—ju—3kTIn2. (Ad)

one dimension and the one-dimensional KDP mdidihe  From the second relation, we find that the one-dimensional
latter model, a one-dimensional analog of the Slater KDRKpp model, which is restored in the limié— +, corre-
model;® was proposed by Nagle as a simplest example tha§ponds to the Ising model with the coupling constintfin-
presents a phase transition at some finite temperature, aw or the reduced temperatuwe'r/\] ZEro; thus’ the phase
indeed is an illuminating model as taken as an exercise in gansition atT=u/(k In2) in the one-dimensional KDP
standard textbook! We first briefly define the one- model is mapped to the discontinuity in the magnetization at
dimensional KDP model and then relate this model to theq=0 in the one-dimensional Ising model &T/J=0. In
one-dlmenS|on§1I Ising model. _ Sec. lll, we saw exactly the same mapping as this for the
~ The one-dimensional KDP model consists of a onéphase transition in the model of freezing in one dimension
dimensional array of phosphate (PQ groups that has a with the parameteP infinite. Thus, the present model with
pair of protons H (and a single potassium ion"Kplaying infinite has a close connection with the KDP model when
no role in the modélbetween any two neighboring phos- poth are in one dimension.
phate groups. It is assumed that each pair of the protons The close connection between the two models will be
takes one of four possible configurations, which we here repexpiicit if the energy of the ground state is taken to be 0 in

resent by—, —, T and |, and that the total energy of the the model of freezing, i.ew=0. It then follows from Eq(5)
system is the sum of the pair interaction energies betweegith C=2 andQ=In(q—1) that

two neighboring “arrows:” O if they are—«— or ——; u L .
>0 if they are] 1, 1], |1, or | |; and+ otherwise.(Our H=3zu—2kTIn(q—1), J=ze—3u. (AS)
language defining the energy is different from the originalcomparing these with the relatioria4), we find that the
one in which the total energy is the sum of phosphate grougne-dimensional Takagi model is identical with the model of
energies; but they are equivalenthe partition function of  freezing in one dimension with=3, except the last term,
the system ofN molecules with the periodic boundary con- — 1KT In 2, in the second equation i#4), which is due to
dition is Zy=2+2"exp(~NukT) because there are two the twofold degeneracy for each low-energy domain of type
ground states with energy 0 and 2xcited states with en- 1 arrows in the former model. This difference will be irrel-
ergy Nu, and thus the internal energy per molecule is dis-evant if e—. Then, when both are in one dimension, the
continuous aff =u/(k In 2) in the thermodynamic limit. KDP model(the Takagi model in the limie— ) is exactly

To find a connection with the Ising model, first assign athe same as the model of freezing witke 3 andP infinity.
finite energye>0 for two neighboring arrows one of which A unique feature of the present model is that there is
is either— or — and the other is eithef or |. This modi-  another route to the phase transition in one dimension; the
fied model is the one-dimensional analog of the Takagiimit Q—c. The paramete® or g is the entropic one rather
model!® Second, classify arrows into two types: type Hf  than the energetic oneP(or €), and the limitQ— corre-
or — and type O if] or |, and then letN; and N, be the  sponds not td— o but to an infinitely large change i for
numbers of arrows of each type, respectively, andNg},  a given finite temperature change in the Ising mdsek the
N1, andNg; be the numbers of two neighboring arrows bothfirst relation in(5)].
being type 0, both being type 1, and one being type 0 and the  The two different ways of enabling the one-dimensional
other being type 1, respectively. Then the partition functionmodel to exhibit the phase transition may be illustrated in the

Zypp is expressed as transfer matrixv. If we now consider all the states for each
molecule (without reducing them to the two staje¥ is a
Zpp= >, 2No2Nor2g=(eNor+uNog /KT (Al)  gxq matrix of the form
0,1

where the sunk ; runs over the two types for each arrow.
The factor 2o is the degeneracy for thé, arrows of type 0 b ¢ -+ c
whereas the other factorN2'? is the degeneracy for the V= SR (AB)
No1/2 domainsof type 1 arrows, for there are only two pos-

) » ” b ¢ -+ ¢
sible states for each domajfh«+«---«"0or ——-.-—
and there ardy,/2 such domains. If we rewriteA1) using wherea=e V<7, b=e kT andc=e YT, bothb andc
the identities amongN,Ng,N;,Ngg,N4;, and Ny, [those being different from those in the reduce2 matrix (7). In
above Eq(2)] with C=2, the limit P—o (i.e., e—®), b=0, and soV is brought to
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