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First- and second-order wetting transitions are contrasted. A mean-field density-functional model
that leads to a second-order transition is introduced. The way in which it differs from an earlier,
otherwise similar model in which the transition is first order is noted. The interfacial and line
tensions in the model are obtained numerically and their behavior on approach to the transition is
determined. The spatial variation of the model’s densities in the neighborhood of the contact line
near the wetting transition is also found and seen to be characteristically different at a second-order
transition from what it is at a first-order transition. The results for the line tension and for the spatial
variation of the densities are in accord with those from an earlier interface-displacement model of
the same phenomena. © 2008 American Institute of Physics. �DOI: 10.1063/1.2895748�

I. INTRODUCTION

We consider three phases � ,� ,� in equilibrium, with the
interfacial tensions ��� ,��� ,���. When ���=���+���

�“Antonoff’s rule”�, the � phase intrudes at �“wets”� the ��
interface and there is no direct �� contact. When, instead,
�������+��� �“Neumann triangle”�, the three phases meet
at a line of common contact, associated with which is an
excess free energy per unit length, the line tension1 �. With
varying thermodynamic state there may be a transition be-
tween these two modes of three-phase equilibrium, termed a
wetting transition.

In the Neumann-triangle regime the phases meet at their
line of common contact with definite contact angles deter-
mined by the tensions. We denote these angles by � ,� ,�,
naming them for the phases through which they are mea-
sured. They are given in terms of the tensions by, for
example,2

1 − cos � =
��� + ��� + ���

2������

���� + ��� − ���� . �1�

On approaching the transition from nonwetting to wetting of
the �� interface by the � phase, �→0 and ���→���+���,
so � vanishes proportionally to the square root of ���+���

−���:

� � ���� + ��� − ����1/2. �2�

In the simplest cases, in mean-field theory, one distin-
guishes first- and second-order wetting transitions �although
there can be more complex behavior, such as sequential wet-
ting in which a partially frustrated first-order transition is
followed by a higher-order wetting transition3,4�. Figure 1
illustrates the distinction. A thermodynamic field variable
�temperature or a chemical potential� there called b varies
through the region of three-phase coexistence. The wetting
transition occurs at b=bw, with b�bw the regime in which
the �� interface is not wet by the � phase and b�bw that in

which it is. The figure depicts the variation of ���+���

−��� with b. In Fig. 1�a� the wetting transition is first order:
���+���−��� vanishes proportionally to the first power of
b−bw and has a metastable extension, indicated by the
dashed line, where the nonwet structure of the �� interface
may persist when the stable structure of that interface would
be that in which it is wet by �. When b�bw, both structures
yield local free-energy minima, while that of the wet inter-
face is the global minimum. Figure 1�b� depicts a second-
order wetting transition: ���+���−��� vanishes proportion-
ally to �b−bw�2 and there is no metastable extension to b
�bw. From Eq. �2�, the first- and second-order wetting tran-
sitions may also be distinguished by the rate at which the
contact angle � vanishes as b→bw:

� � �b − bw�1/2 �first order� , �3�

� � b − bw �second order� . �4�

How intermolecular interactions of different strengths
and ranges may lead to different orders of wetting transition
has been much discussed in the literature �Refs. 5 and 6 and
many references therein�. In the next section we introduce a
mean-field density-functional model of three-phase equilib-
rium that we later show to have a second-order wetting tran-
sition. The model is contrasted with a similar one that has
been much studied in the past and is known to have a first-
order wetting transition, thus showing that seemingly small
differences in models can have not merely quantitative but
also qualitative effects on the character of the transition.

The details of the numerical methods and analysis are in
Sec. III and a brief summary is in Sec. IV.

II. MODEL

Our model free-energy functional �, the density of ex-
cess free energy due to the density inhomogeneities at the
interfaces and contact line, is a functional of two spatially
varying densities 	1�r� and 	2�r� and a field variable b of the
forma�Electronic mail: koga@cc.okayama-u.ac.jp.
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� = F�	1�r�,	2�r�;b� + 1
2 ���	1�r��2 + ��	2�r��2� , �5�

with

F�	1,	2;b� = ��	1 + 1�2 + 	2
2���	1 − 1�2 + 	2

2�


�	1
2 + �	2 − b�2� �model B� . �6�

We call this model B to distinguish it from a much studied
earlier model �Ref. 7 and many earlier papers�, which we call
model A. Instead of Eq. �6�, which is a sixth-order polyno-
mial in the densities, in model A one has the fourth-order
polynomial

F�	1,	2;b� = 16	2
2�	2 − b�2 + ��	2 − b	1�2 − b2�2

+ ��	2 + b	1�2 − b2�2 �model A� . �7�

In both models, for each b there are three phases � ,� ,� in
equilibrium, in which the densities, far from the interfaces
and contact line, have the uniform values

	1 = − 1, 	2 = 0 �phase ��;

�8�
	1 = 0, 	2 = b �phase ��; 	1 = 1, 	2 = 0 �phase �� .

At each of these bulk-phase compositions, in each model, F
and both �F /�	1 and �F /�	2 vanish while F�0 at any other
composition 	1 ,	2. In spite of the seemingly great similarity
of the two models, model A is known to have a first-order
wetting transition in which the � phase wets the �� inter-
face, while in model B the transition is second order, as we

shall show in Sec. III. The distinction is that between
Figs. 1�a� and 1�b�.

In the interfaces far from the contact line, the densities
	1�r� and 	2�r� vary only in the directions perpendicular to
the interfaces. If for each interface separately a coordinate z
is associated with the perpendicular direction, then the den-
sities, as they vary through the interface, are functions
	1�z� ,	2�z� of z alone. The several interfacial tensions are
variational integrals over z of the functional �, minimized
with respect to the 	1�z� ,	2�z� that satisfy Eqs. �8� at z
= ��:

� = min
	1�z�,	2�z�

�
−�

�

�dz , �9�

where � is in turn ���, ���, or ���, according to which of
the boundary conditions �8� the 	1�z� and 	2�z� are required
to satisfy. The minimizing 	1�z� and 	2�z� give the equilib-
rium �or metastable� spatially varying composition of the
interface. The variational minimum is achieved by the solu-
tion 	1�z�, 	2�z� of the coupled Euler–Lagrange equations

�F

�	1
=

d2	1

dz2 ,
�F

�	2
=

d2	2

dz2 �10�

subject to the same boundary conditions �8� for each inter-
face in turn.

On eliminating z between 	1�z� and 	2�z� one has a tra-
jectory in the 	1 ,	2 plane, from one bulk-phase point 	1 ,	2

of Eqs. �8� to another, showing how these densities vary with

FIG. 1. �a� First-order wetting transi-
tion at b=bw. �b� Second-order wet-
ting transition at b=bw.

FIG. 2. �a� Model A. The horizontal line 	2=0 from 	1=−1 �� phase� to 	1= +1 �� phase� gives the equilibrium �or metastable� structure of the �� interface,
while the curves from 	1=−1, 	2=0 �� phase� to 	1=0, 	2=b �� phase� and from 	1= +1, 	2=0 �� phase� to 	1=0, 	2=b �� phase� give the structures of the
�� and �� interfaces, respectively. �b� Model B. The curve from 	1=−1, 	2=0 �� phase� to 	1= +1, 	2=0 �� phase� that does not pass through 	1=0,
	2=b �� phase� gives the structure of the �� interface, while the other two curves give the structures of the �� and �� interfaces.
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each other in the corresponding equilibrium �or metastable�
interface far from the contact line. Such trajectories are
shown in Figs. 2�a� and 2�b�, where Fig. 2�a� is characteristic
of the earlier model A and Fig. 2�b� of the present model B.
In model A �Fig. 2�a�� there is always a locally stable ��
interface in which �with an appropriate choice of the origin
and direction of z�

	2�z� � 0, 	1�z� = − tanh�2b2z� . �11�

In model B there is no solution for the �� interface in which
	2�z��0; instead, there is a solution in which 	2 increases
from 0 in the interior of the bulk � phase, reaches a maxi-
mum at which 	1=0, and then decreases to 0 again in the
interior of the bulk � phase.

When the free energy �the tension ���� of the �� inter-
face associated with the trajectory in Fig. 2 that goes directly
from � to �, not via �, is less than that on the composite
trajectory from � to � and � to �, the stable structure of the
�� interface is that given by the direct trajectory, and the ��
interface is not wet by the � phase. When the composite
trajectory via � is that of the lower tension, the stable ��
interface is that which is wet by �, and consists of a macro-
scopically thick layer of � bounded by normal �� and ��
interfaces, with ��� then equal to ���+���. In model A, the
transition between these two alternative structures of the ��
interface occurs while the indirect �via �� and direct trajec-
tories from � to � in Fig. 2�a� are still distinct. That is a
first-order transition in the structure of the �� interface. In
model B, by contrast, ��� comes to approach and then equal
���+��� only when the direct �� trajectory in Fig. 2�b�
comes to approach and then coincide with the indirect trajec-
tory via �. That is a second-order wetting transition. At the
first-order transition there is thus a discontinuity in the struc-
ture of the �� interface with an associated discontinuity in
d��� /db, and so also in d����+���−���� /db �Fig. 1�a��,
since d��� /db and d��� /db are continuous; while at the
second-order transition, the structure of the �� interface is
continuous and so too are d��� /db and d����+���

−���� /db �=0�.
The differences between the F�	1 ,	2 ;b� of models A and

B are subtle, but one difference that may be implicated in the
one having a first-order and the other a second-order wetting
transition is shown in Fig. 3, where F�0,	2 ;b� is sketched as
a function of 	2 for fixed b. This shows how the local free-
energy density F varies with 	2 as a representative point at
	1=0 in Figs. 2�a� and 2�b� moves vertically upward from

	2=0 to the � phase at 	2=b. In Fig. 3�a�, for model A, one
sees a maximum at 	2=b /3, implying a potential hill at 	1

=0 ,	2=b /3 in the plane of Fig. 2�a�. This could have
blocked the direct �� trajectory from passing through 	2

=b /3, and thus blocked it from ultimately coinciding with
the indirect trajectory via � at a second-order transition �even
if, as in model A, the direct trajectory had not anyway been
confined to the 	2=0 axis�. In model B, by contrast, for any
b	3, there is no such free-energy barrier, so nothing to
block the direct �� trajectory from passing through any
value of 	2, ultimately coinciding with the indirect trajectory.

The first- and second-order wetting transitions are also
distinguished by characteristically different shapes of the
contours of constant 	1�r� and 	2�r� at the three-phase con-
tact line, as the transition is being approached. Thus, the
spatial structure of the contact line itself is different at a
first-order wetting transition from what it is at a second-order
transition. These contours are displayed in Sec. III.

The densities 	1�r� and 	2�r� are uniform in the direction
of the contact line but vary in any plane perpendicular to that
line. In both models A and B the line tension � is obtained by
minimizing with respect to 	1�r� and 	2�r� the integral of the
excess free-energy density � over a large �ultimately infi-
nite, in principle� area in any such plane. The minimum is
achieved when 	1�r� and 	2�r� satisfy the coupled Euler–
Lagrange equations �analogous to �10� for the interfaces far
from the contact line�

�F

�	1
= �2	1,

�F

�	2
= �2	2, �12�

where �2 is the two-dimensional Laplacian. These are to be
solved subject to the conditions that 	1�r� and 	2�r� reduce to
Eqs. �8� in the bulk phases, far from the interfaces and con-
tact line, and reduce to the 	1�z� and 	2�z� for each interface
far from the contact line, as determined from the solutions of
Eqs. �10�. Once the equilibrium 	1�r� and 	2�r� are deter-
mined in this way, the line tension � may then be found from
the Kerins–Boiteux integral,8

� =� �� − 2F�da , �13�

where the integration is over the whole plane perpendicular
to the contact line �the integrand being short ranged�, with da
the element of the area. This was earlier done7 for model A
and is now done for model B in Sec. III.

FIG. 3. F�0,	2 ;b� vs 	2 for fixed b.
�a� Model A. �b� Model B for b�	3.
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Indekeu9,10 had shown from an interface-displacement
model that in mean-field approximation with short-range
forces, as b→bw at a first-order wetting transition, � ap-
proaches its finite limiting value �w as

� � �w − c	b − bw ln�1/�b − bw�� �14�

with some constant c. This behavior was verified numerically
for model A in Ref. 7, with c
0.455. Indekeu9,10 has also
shown from his interface-displacement model that with
short-range forces in mean-field approximation, on approach
to a second-order wetting transition, � vanishes through a
range of negative values proportionally to the first power of
the contact angle �, or, from Eq. �4�,

� � − k�b − bw� , �15�

with a positive coefficient of proportionality k. We shall
verify Eq. �15� and the corresponding behavior with �, for
model B, in Sec. III.

III. NUMERICAL METHODS AND RESULTS

The density profiles 	1�z� and 	2�z� of interfaces that
minimize ��dz are obtained by numerically solving the
coupled Euler–Lagrange Eqs. �10� subject to the boundary
conditions �8�. As in the earlier study of model A,7 the Euler–
Lagrange equations are approximated by five-point differ-
ence equations, and then solved iteratively with a successive
overrelaxation �SOR� method.11 The range of z is taken to be
�−10,10� and the minimizing 	1�z� and 	2�z� are calculated
on a uniform grid with spacing h=0.005. The initial guesses
of 	1�z� and 	2�z� are taken to be step functions with two
intervals separated at z=0. For the �� interface near the
wetting transition, the initial 	1�z� and 	2�z� are chosen to be
step functions with three intervals separated at z= �z� with
an appropriate z�. The criterion for convergence is an rms
difference of less than 1
10−13 between iterates.

Figure 4 shows the density profiles 	1�z� and 	2�z� of the

�� and �� interfaces for two representative thermodynamic
states, one far from the wetting transition �b=	3� and one
very close to the transition �b=0.682�.

Comparisons between Figs. 4�a� and 4�c� and between
Figs. 4�b� and 4�d� show that as the wetting transition is
approached the interfaces become less sharp and a �-like
layer grows in the �� interface. The �� interface is symmet-
ric by symmetry of model B �as it is also for model A�: 	1�z�
and 	2�z� are antisymmetric and symmetric, respectively,
with respect to the z at which 	1�z�=0 �z=0 in Figs. 4�a� and
4�c��. However, the �� and �� interfaces are not symmetric,
as seen in Figs. 4�b� and 4�d�, and they cannot be so, as
shown below.

The densities 	1�z� and 	2�z� are characterized by expo-
nential decay to their bulk-phase values with decay lengths
�1 and �2. From the Euler–Lagrange equations one finds that

�1 = �2 =
1

2	2�b2 + 1�
�16�

for decay into the � and � phases and

�1 = �2 =
1

	2�b2 + 1�
�17�

for decay into the � phase. From Eqs. �16� and �17�, the ��
and �� interfaces cannot be symmetric.

The interfacial tensions are obtained from numerical in-
tegration

� = 2� Fdz , �18�

which is equivalent to Eq. �9� with the identity �=2F that
holds for equilibrium 	1�z� and 	2�z�. We find that numerical
values of ���

2 for several rational numbers of b2 are very
close to rational numbers. For example, ���

2

=10.666 666 64¯ 
96 /9 for b2=3, ���
2 =3.555 555 554¯

FIG. 4. Density profiles 	1�z�, 	2�z�.
�a� �� interface, b=	3. �b� �� inter-
face, b=	3. �c� �� interface, b
=0.682. �d� �� interface, b=0.682.
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32 /9 for b2=1, ���
2 =1.777 777 777¯ 
16 /9 for b2

=1 /2, etc. This implies the analytical formula ���
2 =32b2 /9

or

��� =
4	2

3
b . �19�

Conversely, it is checked that the above relation �19� holds
for arbitrarily chosen b within numerical uncertainty in ���.
For the �� interface we find that ���

2 =0.125 000 000¯

1 /8 for b2=0, ���

2 =0.445 312 500¯ 
57 /128 for
b2=1 /2, ���

2 =1.111 111 111¯ 
10 /9 for b2=1,
���

2 =4.124 999 995¯ 
33 /8 for b2=2, and ���
2

=10.666 666 64¯ 
32 /3 for b2=3. These results, too, im-
ply an analytical form for ����b�. If ���

2 is assumed to be a
quartic polynomial in b2 and the above rational numbers for
���

2 are taken to be exact, all the coefficients of the assumed
polynomial are given by rational numbers:

���
2 = 1

8 + 7
18b2 + 5

12b4 + 1
6b6 + 1

72b8. �20�

For any other values of b examined, we find that the relative
difference between Eq. �20� and the integral �18� is less than
10−8.

In Fig. 5 are plotted ���+���−��� and ����+���

−����1/2 as functions of b. The behavior in Fig. 5�a� is the
same as that in Fig. 1�b�; that is, in model B the wetting
transition is second order. The linear fit of the two data points
closest to wetting in Fig. 5�b� gives the numerical estimate:
bw=0.681 25¯. The ���+���−��� given by the conjectures
�19� and �20� completely overlap with the numerical data
points. Provided that Eqs. �19� and �20� are exact, the wet-
ting transition is exactly determined as a solution of a quartic
equation ����+���−��������+���+����=4���

2 −���
2 =0

for b2 �note in the present model ���=����. The solution is
again given analytically:

bw = 	2	3 − 3 = 0.681 250 038 633 ¯ , �21�

which is in agreement with the numerical estimate up to five
digits. Indekeu12 notes that this is also the solution to �1
+b�3/2− �1−b�3/2=2, an equation he13 ascribes to Cahn14 and
to Nakanishi and Fisher15 in a related context. With the vir-
tually perfect agreements with all the numerical results, we
shall assume Eqs. �19�–�21� to be exact.

Trajectories in the 	1 ,	2 plane, too, have what seem to
be simple analytic expressions. Let ��, ��, and �� be the
asymptotic angles between trajectories at the bulk-phase
points �, �, and � in Fig. 2�b�. In the fully symmetric case
�b=	3�, where ��=��=��, the numerical calculation sug-
gests the common value to be exactly 30°, so ��+��+��

=90°. At the second-order wetting �b=bw�, the direct ��
trajectory coincides with the indirect trajectory via � so that
��=��=0. Numerical evaluation at the wetting transition
suggests ��=90° �exactly�. Thus, again, ��+��+��=90°. In
fact, numerical calculations for several values of b imply that

�� + �� + �� = 90° �22�

for any b. Now let �� be the angle made by the direct ��
trajectory with the 	1 axis at �, and let A� be the � vertex
angle in the triangle ���, where � ,� ,� here stand for the
bulk-phase points in the 	1 ,	2 plane. Then numerical calcu-
lations suggest 4��=A� for any b. Since tan A� /2=1 /b, this
gives another relation,

tan �� = − b + 	b2 + 1. �23�

The angles �� /2 and �� are related to the ratio of the ampli-
tudes of exponential decays of the interfacial profiles to their
bulk values. Let �1,� and �2,� be the amplitudes of
asymptotic decay of 	1 and 	2 in the �� interface to their
bulk �-phase values, and likewise let �1,� and �2,� be the
amplitudes of the decay of 	1 and 	2 in the �� interface to
their values in the � phase. Then

tan
��

2
=

�1,�

�2,�
, tan �� =

�2,�

�1,�
. �24�

The conjecture ��=90° at b=bw means that the amplitudes
of the exponential decays of 	1�z� and 	2�z� to their bulk
�-phase values become identical at the wetting transition:
�1,�=�2,�, which we have verified numerically. Also, from
Eq. �23�, �2,� /�1,�=−b+	b2+1. To check this, the ampli-
tudes were evaluated from 	1�z� and 	2�z�, and the relative
deviation of �2,� /�1,� from −b+	b2+1 for several values of
b was found to be less than 10−5.

As described in Sec. II, the equilibrium 	1�r� and 	2�r�
of three phases in contact are obtained as the solutions of

FIG. 5. �a� ���+���−��� vs b. �b�
	���+���−��� vs b. The points are
numerical results and solid curves are
those given by conjectured relations
�19� and �20�.
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the Euler–Lagrange Eqs. �12�. The coupled equations are dis-
cretized with a nine-point stencil and solved by the SOR
method11 for square-grid points with grid spacings dx ,dy in
an Lx
Ly rectangle, the x-axis being set parallel to the ��
interface. From the 	1�r� and 	2�r� thus obtained, the line
tension � is given by Eq. �13�. The dimensions Lx, Ly of the
rectangle must be sufficiently large for the inhomogeneity
due to the three-phase contact to be absent on the sides of the
rectangle; such Lx goes to infinity as b approaches bw be-
cause the region affected by the three-phase contact extends
indefinitely in the direction of the �� interface as the contact
angle � goes to 0. This is the main reason that numerical
calculation of the line tension becomes a formidable task on
approaching the wetting transition. To reduce the difficulty
and to approach wetting as closely as possible we increase
the grid spacing dx with increasing Lx as b goes to bw. It was
checked that � thus obtained is independent of dx. This
method is more effective for model B than for model A be-
cause in model B, with a scaled coordinate x*=x tan�� /2�
for the direction of the �� interface, the variation in that
direction is roughly independent of � near the second-order
wetting transition. The closest to the wetting transition for
which � is obtained is b=0.682 and �=0.148 79¯ �in de-
grees�, where �Lx ,Ly�= �20 000,20� and �dx ,dy�= �20,0.02�:
Then the calculation completes in a few weeks with an eight-
core 3.0 GHz Intel Xeon processor. The criterion for conver-
gence is an rms difference in 	1 and 	2 of less than 1

10−11.

The line tension � is plotted against the field variable b
and the contact angle � in Fig. 6. It is seen that � is negative
in the entire range of states and goes monotonically to zero
as the wetting transition is approached. The slope d� /db is
not diverging in the same limit �Fig. 6�b��. These results
verify the asymptotic behavior �15� of � given by Indekeu.
The negative coefficient of proportionality −k in Eq. �15� is
found to be −4.57�0.10 and the corresponding coefficient
for the contact angle � to be −1.32�0.06 rad−1. The sum of
the two � in Eqs. �16� and �17�, evaluated at b=bw, is around
0.8 and is a rough measure of the sum ���+��� of the thick-
nesses of the �� and �� interfaces at wetting, while ���,
from Eq. �19�, is 1.28. Thus, the product ����+��������1.
Therefore, the −1.32 found here for the coefficient of the
angle � on approach to wetting is close to −����+�������.

This, as remarked by Indekeu,12 is as in the interface-
displacement model.9

The spatial variations of 	1 and 	2 in model B in the
neighborhood of the contact line near the second-order wet-
ting transition and in model A near the first-order wetting
transition are displayed as contour plots in Fig. 7. The dis-
tinction between the two cases is apparent: The contours of
constant 	1 in model B are gently curved in the three-phase
contact region whereas those of model A have a forklike
shape. More precisely, for model B the slope of a contour
varies monotonically from 0 to tan�� /2� or −tan�� /2� as x
increases whereas for model A the magnitude of the slope
varies from 0 to a value that exceeds tan�� /2� and then ap-
proaches the limiting value from above; i.e., the contours
have inflection points. These are in accord with the analo-
gous pictures found in the interface-displacement model of
Indekeu �Figs. 1 and 7 of Ref. 9 or Figs. 10 and 14 of Ref.
10� and of Dobbs and Indekeu16 �Figs. 4 and 5�. �The 	2

contours in Figs. 7�c� and 7�d� mirror the 	1 contours in �a�
and �b�, except that the “handle” of the “fork” is missing in
�c� because in model A, in the �� interface far from the
contact line, 	2 is identically 0 �Fig. 2�a��.� This further
agreement between the density-functional and interface-
displacement models is gratifying.

IV. SUMMARY

We consider three coexisting phases � ,� ,� with
��� ,��� ,��� the three interfacial tensions. The wetting tran-
sition between states in which the � phase does and does not
wet the �� interface is associated with the transition between
the two conditions ���=���+��� and �������+���, re-
spectively. The transition may be of first or second order.
With b a thermodynamic control parameter �a field variable
such as a chemical potential or the temperature� and bw its
value at the wetting transition, the first- and second-order
transitions are characterized by Figs. 1�a� and 1�b�, respec-
tively. They are distinguished likewise by Eqs. �3� and �4�,
where � is the contact angle measured through the � phase
as the wetting transition is approached from the nonwetting
side �b�bw�.

An earlier mean-field density-functional model �here
called model A� with a first-order wetting transition is re-
called and a new model �model B� is introduced and later

FIG. 6. � vs b ��, bottom axis� and vs
� ��, top axis� on a large scale �a� and
near the wetting transition �b�.
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shown to have a second-order wetting transition. The two
differ in the local parts, F�	1�r� ,	2�r� ;b�, of their free-
energy densities, where 	1�r� and 	2�r� are two densities that
define the spatially varying composition of the system. The
functions F are a fourth-order polynomial in 	1 and 	2 for
model A, given in Eq. �7�, and a sixth-order polynomial for
model B, given in Eq. �6�.

In the nonwetting regime there is a line tension �, which
is the excess free energy per unit length of the three-phase
contact line. It has a finite positive value �w at a first-order
wetting transition, where it behaves as in Eq. �14� as the
wetting transition is approached �b→bw�, but vanishes at a
second-order wetting transition as in Eq. �15�.

Model B is treated numerically in Sec. III by solving the
Euler–Lagrange Eqs. �10� for the interfacial profiles 	1�z�
and 	2�z� far from the contact line and the analogous Eqs.
�12� for the full 	1�r� and 	2�r� in any plane perpendicular to
the contact line. The former determine trajectories in the
	1 ,	2 plane that describe the compositions of the interfaces,
and are characteristically different for the two models, as
seen in Fig. 2�a� for model A and Fig. 2�b� for model B. The
exponential decay lengths �1 and �2 with which 	1�z� and
	2�z� approach their bulk-phase values �8� are given by Eqs.
�16� and �17�. The interfacial tensions are observed numeri-
cally to be given extremely accurately by Eqs. �19� and �20�,

which are then conjectured to be exact and imply Eq. �21�
for bw. Simple analytical formulas, Eqs. �22� and �23�, for
the angles in Fig. 2�b�, are also found to hold to high numeri-
cal accuracy. Formulas �19�–�23� are thus almost surely ex-
act but proving them remains a challenge to analytical
theory. That the wetting transition in model B is indeed of
second order is seen in Fig. 5, where the numerical results as
plotted in Fig. 5�a� are to be compared with the schematic
Fig. 1�b�.

The line tension in model B is found from the numeri-
cally determined 	1�r� and 	2�r� via the Kerins–Boiteux for-
mula �13� and the results are plotted in Fig. 6. They are seen
to satisfy Eq. �4�, again consistent with a second-order wet-
ting transition.

Contours of constant 	1�r� and 	2�r� in any plane per-
pendicular to the contact line, for models A and B, were
determined numerically and are displayed in Fig. 7. They are
seen to be characteristically different, those associated with
the first-order wetting transition in model A being forklike
with inflections, and those for model B being smoother with
monotonically varying slopes near the contact line. This dis-
tinction between the two models as well as the demonstrated
distinction between Eqs. �14� and �15� for the line tension are
in accord with earlier results found in interface-displacement
models.

FIG. 7. Spatial variations of 	1 and 	2 in the neighborhood of the contact line near the wetting transition: �a� Contour plots of constant 	1 for model A
�b=0.512, 	1=−0.8, . . . ,0.8�; �b� plots of constant 	1 for model B �b=0.682, 	1=−0.8, . . . ,0.8�; �c� plots of constant 	2 for model A �b=0.512, 	2

=0.01b ,0.5b ,0.99b�; and �d� plots of constant 	2 for model B �b=0.682, 	2=0.01b ,0.5b ,0.99b�.
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