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Wetting transitions, in which one liquid wets, or spreads at, the interface between
a second liquid and their common vapor, are defined and first- and second-order
transitions are distinguished. The mean-field density-functional models of fluid
interfaces are recalled. A criterion is noted for determining when the wetting
transitions in those models are required to be of first order or may be of second
order. It is seen how two examples of such density-functional models that have
been treated in the past, one leading to a first-order and the other to a second-
order wetting transition, provide examples of the application of the criterion.

1. Introduction

We consider two liquid phases (called phases 2 and 3) in equilibrium with their
common vapor (phase 1). The three phases may meet at a line of common contact
with three non-vanishing contact angles, or alternatively one of the phases, say 2,
may ‘‘wet’’ (spread at) the interface between 1 and 3. Let the three interfacial tensions
be denoted s12, s23, and s13, and suppose the liquid–vapor tension s13 to be the
greatest of the three. Then the condition for the three phases to meet at a line of
common contact (‘‘non-wetting’’) is the triangle inequality

s13 < s12 + s23 (non-wetting). (1)

The alternative (‘‘wetting’’) is that phase 2 spreads as a macroscopically thick film at
the 1,3 interface, with

s13 ¼ s12 + s23 (wetting). (2)

A transition between these two modes of three-phase contact is termed a wetting
transition.
Such a transition might occur as the temperature or a chemical potential varies,

leading to two continuous ranges of three-phase states (triple points), with (1)
holding over one range and (2) over the other. Between those two ranges of triple
points there would then be a boundary at which (1) goes over continuously to (2)
or the reverse. According to the phase rule, to have a continuum of three-phase
states instead of just isolated triple points requires that the system be a mixture of
at least two components. In a one-component system there are only isolated triple
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points, where either one of the phases wets the interface between the other two, or
not. There is no transition between those two circumstances because no field variable
can then vary without one or two of the three phases disappearing.
For simplicity we consider here systems with the minimum number, two, of

components. By the phase rule, the system of three phases and two components
then has one degree of freedom; i.e., there is then a one-dimensional manifold of
triple points parameterized by a single field variable, which we henceforth call b,
and which we may think of as some function of the temperature and the two chem-
ical potentials. The wetting transition between (1) and (2) occurs when b takes some
value bw. We shall take b > bw to be the range of non-wet states, where (1) is then
satisfied, and b < bw to be the range of states where the 1,3 interface is wet by 2,
so that (2) holds.
In reality, many such liquid–liquid–vapor three-phase equilibria occur in systems

of c > 2 components. To model such systems and still have the simplicity of having
only one variable field we would imagine holding fixed c " 2 of the system’s c + 1
field variables. Then with the two phase-equilibrium constraints we would still be
considering only a one-dimensional manifold of triple points, parameterized by
a single varying field.
The distinction between first- and second-order wetting transitions is illustrated in

Fig. 1, where s12 + s23 " s13, which we call Ds, is shown schematically as a function
of b. In the first-order transition Ds vanishes linearly with b " bw, and has a meta-
stable extension, shown by the dashed line in Fig. 1(a), in which the non-wet inter-
face for b < bw is at a local but not global minimum of the free energy. At the global
minimum, Ds ¼ 0 over the range b < bw. At a classical second-order wetting
transition (in the sense of the Ehrenfest classification), Ds vanishes proportionally
to (b " bw)

2 as b approaches bw from above [Fig. 1(b)], and does not have a meta-
stable extension to states with b < bw. A wetting transition may be very weakly first
order, when the curve of Ds in Fig. 1(a) crosses the b-axis at b¼ bw so shallowly that
it may be difficult to locate bw or to distinguish the slope of the curve at bw from 0.1

2. Mean-field density-functional theories recalled

In each of the three interfaces, the densities r1 and r2 of the two components vary in
the direction z perpendicular to that interface. We define an excess free energy of
inhomogeneity J[r1(z), r2(z);b], which is a functional of the two spatially varying
densities and depends on the single field variable b. We take it to be of the classical
square-gradient form

J ¼ F ½r1ðzÞ; r2ðzÞ; b& þ
1

2

h
r01ðzÞ

2 þ r02ðzÞ
2
i

(3)

Fig. 1 (a) First-order transition; (b) second-order transition.
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where F(r1, r2;b) is such that it, along with vF/vr1 and vF/vr2, vanish when, for the
given b, the densities r1 and r2 are those of any of the three coexisting bulk phases;
while F > 0 otherwise. The tension s of each of the three interfaces is then

s ¼ min
r1ðzÞ; r2ðzÞ

ðN

"N

J dz (4)

i.e., the variational minimum of the integrated free-energy density, minimized with
respect to the densities r1(z), r2(z) subject to their taking their respective bulk-phase
values at z ¼ ( N. The minimizing r1(z) and r2(z) satisfy the Euler–Lagrange equa-
tions

vF

vr1
¼ d2r1

dz2
;
vF

vr2
¼ d2r2

dz2
(5)

These are to be solved subject to the boundary conditions at z ¼ ( N noted above.
When z is eliminated between r1(z) and r2(z) for any of the interfaces the result is

a trajectory in the r1, r2 plane that describes how r1 and r2 vary with each other
through that interface. There are three such trajectories, one for each of the three
interfaces, as shown schematically in Fig. 2. The density variables are taken to
have the values r1 ¼ "1, r2 ¼ 0 in phase 1; r1 ¼ 0, r2 ¼ b in phase 2; and r1 ¼ 1,
r2 ¼ 0 in phase 3. Here r1 and r2 are not to be taken literally as densities but rather
as two independent functions of the physical densities, chosen to make the notation
and the representation in Fig. 2 simple.
The curve in Fig. 2 extending from"1,0 to 0, b is the 1,2 interfacial trajectory; that

from 0, b to 1,0 is the 2,3 interfacial trajectory; that from"1,0 to 1,0 that does not go
via 0, b is that of a 1,3 interface that is not wet by phase 2; while the composite trajec-
tory that does go from "1,0 to 1,0 via 0, b is that of a 1,3 interface that is wet by
phase 2.
Each trajectory corresponds to a solution r1(z), r2(z) of the Euler–Lagrange eqns

(5) with the appropriate boundary conditions. When these are substituted in the inte-
grand on the right-hand side of (4) the result is the tension s of the corresponding
interface. The three tensions are functions of b.
The equilibrium 1,3 interface is or is not wet by phase 2 according to whether the

tension s13 that corresponds to the direct 1,3 trajectory is respectively greater or less
than the sum s12 + s23, which is the tension of the wet 1,3 interface. The wetting
transition occurs at that b( ¼ bw) for which s13 of the non-wet interface equals s12
+ s23. If the transition is of second order, there is no solution of the Euler–Lagrange
equations corresponding to a non-wet 1,3 interface when b < bw [cf. Fig. 1(b)], hence
no direct 1,3 trajectory in the r1, r2 plane, only the indirect trajectory via 0, b. The
latter is always present because it is a composite of the 1,2 and 2,3 interfacial

Fig. 2 Wetting and non-wetting trajectories in the r1, r2 plane. The bulk-phase densities are
r1 ¼ "1, r2 ¼ 0 (phase 1); r1 ¼ 0, r2 ¼ b (phase 2); r1 ¼ 1, r2 ¼ 0 (phase 3).
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trajectories, and those interfaces are present irrespective of whether phase 2 wets the
1,3 interface or not.

3. First- and second-order transitions

Wetting transitions, which here are transitions in the structure of the 1,3 interface,
are in many ways analogous to the transitions between bulk phases in three dimen-
sions. For the latter, while the free energy is necessarily continuous at the transition,
its first derivatives with respect to the thermodynamic fields, viz., the energy,
entropy, and mass densities and the chemical composition, are discontinuous for
first-order transitions (except for accidental azeotropies), but are still continuous
at transitions of higher order. Discontinuity in the thermodynamic densities reflects
discontinuity in the structures of the phases; at higher-order transitions the struc-
tures are continuous.
The relevant free energy in the wetting transitions is Ds. Its derivative with respect

to the field variable b is discontinuous at b ¼ bw for the first-order transition in
Fig. 1(a) but continuous for the second-order transition in Fig. 1(b). In our mean-
field density-functional models the ‘‘structures’’ of the two alternative 1,3 surface
phases are the alternative chemical composition profiles r1(z), r2(z) of the wet and
non-wet 1,3 interfaces. These correspond to the two alternative 1,3 trajectories in
the r1, r2 plane of Fig. 2, one going directly from"1,0 to 1,0 (non-wet) and the other
indirectly, via 0, b (wet). If the transition is of first order the structure is discontin-
uous; i.e., the two alternative trajectories are still distinct at b ¼ bw. If it is of second
order the two trajectories coincide at the transition, where there is then only the one,
which goes via 0, bw.
As noted earlier, the function F(r1, r2; b) in (3) and its derivatives vF/vr1 and vF/r2

are 0 at the points r1, r2 in Fig. 2 representing the compositions of the bulk phases,
while F > 0 everywhere else. Near those points contours of constant F are ellipses.
For simplicity we suppose F(r1, r2; b) to be an even function of r1, so the trajectories
are symmetric in r1, as in the example in Fig. 2. Then in the immediate neighborhood
of the phase-2 point at 0, b we will have

Fðr1; r2; bÞ )
"
r1
a1

#2

þ
"
b" r2
a2

#2

(6)

where a1
ffiffiffiffi
F

p
and a2

ffiffiffiffi
F

p
are the semi-axes of the elliptical contours of constant F in

the directions of the r1 and r2 axes, respectively, with a1 and a2, in general, functions
of b. In related work2 it is shown from the Euler–Lagrange eqns (5) and their first
integral, and from (6), that when the wetting transition is of higher than first order,
d2r2/dr1

2 evaluated at the maximum on the non-wetting 1,3 trajectory in Fig. 2 must
diverge at the wetting transition, while d2r2/dr1

2 on the wetting trajectory near 0,
b diverges or remains finite as b/bw according to whether, at b ¼ bw, a1/a2 < 2 or
a1/a2 $ 2, respectively. Then since the wetting and non-wetting trajectories coincide
at a higher-order wetting transition, a necessary condition for the transition to be of
higher order is that a1/a2 < 2 at b ¼ bw, and then a sufficient condition that it be of
first order is that a1/a2 $ 2.
We shall now recall two wetting-transition models that have been treated in the

past,1,3 in one of which the transition is of first order and in the other of which it
is of second order, and we shall see how the stated criterion is satisfied.
In the first,1

F(r1, r2;b) ¼ 16r2
2(r2 " b)2 + [(r2 " br1)

2 " b2]2 + [(r2 + br1)
2 " b2]2 (7)

The coexisting phases are again of compositions (" 1,0), (0, b), and (1,0), as in Fig. 2.
In the immediate neighborhood of 0, b this F is again of the form (6), now with
a1=a2 ¼

ffiffiffi
3

p
=b. There is a first-order wetting transition at b ¼ bwx0.51,1 where
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then a1/a2x3.4. Thus, the wetting transition in this model had to be of first order, as
it is. Indeed, the non-wetting trajectory in this model just runs along the r1 axis itself,
from "1,0 to 1,0, nowhere near the wetting trajectory, which passes through 0, b.
In the second of the two earlier models,3

F(r1, r2;b) ¼ [(r1 + 1)2 + r2
2][(r1 " 1)2 + r2

2][r1
2 + (r2 " b)2] (8)

This, too, is of the form (6) near 0, b, now with a1/a2 ¼ 1. It thus satisfies the neces-
sary condition for its wetting transition to be of higher order, and indeed what is
found is a classical second-order transition as in Fig. 1(b). (In this case the diverging
second derivative d2r2/dr1

2 at b¼ bw is manifested as a discontinuous first derivative:
b " r2 ) | r1 |.)
From (6) it is apparent that the ratio a1/a2 plays the role of an asymmetry, or

anisotropy parameter, a1/a2 ¼ 1 corresponding to the symmetric (isotropic) model.
In general, the thermodynamic singularities at wetting are expected to be non-
universal with respect to this ratio, in the sense that the critical exponents associated
with higher than first-order wetting transitions vary continuously with a1/a2. Indeed,
in earlier work on models of wall wetting with a two-component order parameter4 or
anisotropic vector order parameter5 this non-universality was demonstrated.
Particularly interesting cases arise when the ratio a1/a2 reflects the ratio of charac-

teristic physical length scales of the problem. These two lengths can already appear
in a single-component order parameter model, in the form of decay lengths of the
wall-fluid and the fluid–fluid potential, respectively.6 In this model, the non-univer-
sality of the critical exponents at wetting, found at the classical (van der Waals
theory) level, was found to be robust when thermal fluctuations are taken into
account using functional renormalization group calculations.7

In the entirely different physical system of a type-I superconductor, in which
a ‘‘wetting’’ or interface delocalization transition was uncovered theoretically8 and
verified experimentally,9 these two lengths are the superconducting coherence length
x and the magnetic penetration depth l. For the case in which the theoretically pre-
dicted interface delocalization transition is critical, the critical exponent of the
surface excess free energy was shown10 to vary continuously with the Ginzburg–
Landau parameter k, which is the ratio of l to x.
Now, returning to our model defined through (3) and (6), higher than first-order

wetting transitions are found in the entire interval 0 < a1/a2 < 1.2 This is again consis-
tent with the criterion we exposed. Moreover, for these transitions, too, the critical
exponents of the surface free energy at wetting are found to be non-universal and
vary continuously with the asymmetry or anisotropy parameter a1/a2 (ref. 2). It is
of interest that the order of the wetting transition in mean-field density-functional
models with excess free-energy density J of the form (3), with two spatially varying
densities r1(z) and r2(z), depends on the structure of the function F only in the imme-
diate neighborhood of the composition r1, r2 of the wetting phase.
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