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Abstract
Wetting transitions, in which a fluid wets the interface between two fluid phases, are defined.

There may be first, second, and higher order transitions. The line tension, an excess free energy

per unit length of a three-phase contact line, and the boundary tension, another excess free energy

associated with the boundary of two surface phases at the prewetting transition, are also defined.

Mean-field density functional models of the fluid interfaces are introduced and their results on the

wetting transitions, the line and boundary tensions, and the fluid structures in the three-phase contact

region are presented.
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1. Wetting transition
When three fluid phases coexist, they do so ei-

ther in the two possible modes: (i) they meet at a

common line of contact and the three interfaces

make dihedral angles or (ii) one of them wets the

interface of the other two, i.e., it occupies be-

tween the two phases as an infinitely thick layer.

The transition between the two states is the wet-

ting transition [1, 2]. There must be at least two

components in a fluid system if the system ex-

hibits a wetting transition, because otherwise the

thermodynamic state of three-phase coexistence

cannot be varied. The two modes are illustrated

in Fig. 1, where α, β, γ are the three coexisting

phases and the αγ interface is either not wet or

wet by β. In the non-wet states, the surface ten-

sions of the αβ, βγ, and αγ interfaces satisfy the

inequality:

σαβ + σβγ > σαγ (1)

and the contact angle β is given by

cos β = 1−(σαβ + σβγ + σαγ)(σαβ + σβγ − σαγ)

2σαβσβγ

.

(2)

In the wet states, the αγ interface may be consid-

ered as a composite of the αβ and βγ interfaces.

Then

σαβ + σβγ = σαγ (3)

and the contact angle β = 0. The wetting tran-

sition may be viewed as a transition in the struc-

ture of the αγ interface, between one in which

that interface does not, and one in which it does,

consist of a layer of a macroscopic β phase.

Fig. 1. Two modes of three-phase equilibrium.
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Fig. 2. (a) First-order wetting transition; (b) Second-order

wetting transition.

Let b be a thermodynamic field variable (tem-

perature, pressure, or a chemical potential) that

varies through the region of three-phase coexis-

tence. The wetting transition occurs at b = bw,

with b > bw the regime in which αγ interface is

not wet by the β phase and b < bw that in which

it is. The order n of the wetting transition is the

exponent in

σαβ + σβγ − σαγ ∼ (b− bw)n (4)

which shows Δσ = σαβ + σβγ − σαγ vanishes

proportinally to the n-th power of b− bw. Figure

2 shows the variation of Δσ with b. In Fig. 2(a),

Δσ vanishes proportionally to b − bw and it has

a metastable extension, indicated by the dashed

line. This is the first-order wetting transition. In

Fig. 2(b), on the other hand, Δσ vanishes pro-

portionally to (b−bw)2 and there is no metastable

extension to b < bw. From Eq. (2), the first-order

and second-order wetting transitions may also be

distinguished by the behavior of the contact an-

gle β

β ∼ (b− bw)1/2 (first order),

β ∼ b− bw (second order). (5)

It is usually observed that the wetting transi-

tion at the liquid-vapor or liquid-liquid interface

is of first order. The continuous wetting transi-

tion has long been studied in theoretical models

but its experimental observations are scarce and

controversial. One example is a wetting transi-

tion close to the critical point in methanol-alkane

binary liquid mixtures [3].

μ1

μ2

Wetting transition
A

W

BC

Fig. 3. The triple-point line AB and the prewetting-

transition locus CW projected onto the plane of two ther-

modynamic field variables.

2. Prewetting transition
A prewetting transition is a transition in the

αγ interface in two-phase equilibrium, in which

phase β is not present but comes to be antici-

pated by the sudden appearance of a β-like layer

in the αγ interface. It is often associated with the

first-order wetting transition in three-phase equi-

librium.

Consider a two-component mixture which ex-

hibits a wetting transition. The phase diagram

is given in a three-dimensional space of thermo-

dynamic field variables (e.g., temperature, pres-

sure, and a chemical potential): regions of two-

phase coexistence form surfaces and those of

three-phase coexistence form lines in the 3-d

thermodynamic space. Figure 3 shows a ‘triple-

point’ line, AB, as projected onto the plane of

two of the mixture’s three thermodynamic field

variables, called μ1, μ2 in the figure. The wetting

transition occurs at W. The segment AW corre-

sponds to the non-wet states and WB to the wet

states. The prewetting line is CW. In the three-

dimensional space the prewetting line lies in the

αγ coexistence surface, where it is tangent to

the triple-point line at W [4]. In states on the

αγ coexistence surface far from the triple-point

line AB the αγ interface is thin; but as the state

of two-phase coexistence crosses the prewetting

line, there is a discontinuous change in the struc-

ture of the αγ interface, to one that is thick with
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Fig. 4. (a) Three phases α, β, γ meeting at a line of com-

mon contact. The three-phase contact line, marked by a

dot, and the interfaces are perpendicular to the plane of the

figure. (b) Two distinct surface phases coexisting in the

αγ interface. The boundary between the surface phases

and the αγ interface are perpendicular to the plane of the

figure.

the β-like layer. As the state further approaches

the triple-point line, in the region between CW

and WB in the figure, the β-like layer thickens

and eventually becomes macroscopically thick

when the triple-point line is reached.

3. Line and boundary tensions
The physical space occupied by the three equi-

librium phases and that occupied by the two

equilibrium phases are displayed schematically

in Fig. 4. In Fig. 4(a), the three phases α, β,

γ meet at a line of common contact. The con-

tact line is perpendicular to the plane of the fig-

ure, as are the three interfaces. Of course, the

contact “line” and surface “plane” have diffuse

structures on a molecular scale. The structure

and composition of the system vary only in the

plane of the figure. There is an excess free en-

ergy per unit length of the contact line, which

is the line tension τ . At prewetting, two distinct

surface structures may coexist in the αγ interface

with a boundary line separating them. This is

shown in Fig. 4(b). Associated with the bound-

ary between the surface phases is a different lin-

ear tension, which is the boundary tension τb. It

may be viewed as an analog of the surface ten-

sion, σ, in two dimensions. The boundary ten-

sion τb is necessarily positive as the surface ten-

sion σ is; otherwise the linear boundary cannot

be stable. However, the line tension τ may be

of either sign, because the stability of the con-

tact line is primarily determined by the surface

tensions.

There has been long standing interest in how

the line tension τ behaves as the wetting tran-

sition is approached along the three-phase line

(AW in Fig. 3); and likewise in how the bound-

ary tension τb behaves as the wetting transition

is approached along the prewetting line (CW in

Fig. 3).

As the wetting transition is approached along

AW in Fig. 3, the contact angle β closes down to

0 and the αβ and βγ interfaces become parallel

to each other and infinitely separated from each

other by the β phase. As wetting is approached

along the prewetting line, the β-like layer in

one of the two surface structures becomes indefi-

nitely thick. The two fluid structures, one having

the contact line of the three phases and one hav-

ing the boundary line of the two surface struc-

tures, becomes identical at the wetting transition.

Therefore the line tension τ and the boundary

tension τb should have the same limiting value

τw at wetting. Since the boundary tension can

never be negative, it follows that the line tension

τw is necessarily nonnegative.

4. Theoretical Approaches

4.1 Density-Functional Models

Van der Waals published in 1893 a paper en-

titled The thermodynamic theory of capillarity
under the hypothesis of a continuous variation
of density [5]. This may be considered the ori-

gin of molecular theory of capillarity, for it pre-

sented the basic idea of the mean-field density-

functional theory of inhomogeneous fluids and

succeeded in determining the shape of the den-

sity profile ρ(z) and the surface tension σ of a

liquid-vapor interface. The mean-field theory re-

mains to be an indispensable tool for studying

inhomogeneous fluids [6–9].
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The mean-field density-functional theory of

wetting [1, 6–9] assumes that the free-energy

density Ψ is defined at any point of an inhomo-

geneous system. It is not a function of densities

but a functional of them and in general is of the

form

Ψ = e[{ρi(r)}]−
∑

i

μiρi(r) + p({μi}) + K,

= F ({ρi}) + K (6)

where e is a mean-field energy density and a

function of {ρi} alone, p is a mean-field pres-

sure and a function of {μi} alone, and K is a

non-local functional of {ρi(r)} and independent

of μi. The F ({ρi}) denotes all the terms except

K in the first line of Eq. (6). In three phase equi-

librium the function F has a common minimum

value of 0 when {ρi} are the densities of the three

coexisting phases α, β, and γ far from the inter-

faces and the contact line. The tensions of the

three interfaces are obtained by minimizing the

functional

σ =

∫ ∞

−∞
Ψdz (7)

with respect to variations in {ρi(z)}, subject to

the boundary conditions at z ±∞. Here z is the

direction perpendicular to an assumed planar in-

terface; {ρi} vary only in the direction and ap-

proach the values of the bulk phases as z goes

to ±∞. The F is also a function of thermody-

namic field variables which change the thermo-

dynamic state of three phase equilibrium. One

can study the nature of a wetting transition by

calculating the three surface tensions as func-

tions of the field variables and examining the be-

havior of σαβ + σβγ − σαγ as in Eq. (4).

To calculate the line tension τ [6, 7], choose

a point in the plane of Fig. 4(a) to be the nor-

mal location of the contact line, and construct

around that point a triangle (Neumann triangle)

with sides perpendicular to the three interfaces

and distant Rαβ , Rβγ , Rαγ from the chosen point.

The size of the triangle is taken to be sufficiently

large so that the densities along the sides are ef-

fectively identical with what they are in the in-

terfaces infinitely far from the contact line. Then

τ = lim
Rαβ→∞, etc.

[min

∫
Ψda

−(σαβRαβ + σβγRβγ + σαγRαγ)] , (8)

where the integration is through the area A of

the triangle with da an element of area. The

variational minimization is now over the densi-

ties {ρi(r)} with the boundary conditions that

{ρi(r)} on the sides of the triangle be the respec-

tive interfacial profile {ρi(z)}. Numerical calcu-

lation of the line tension τ is much more difficult

than that of the surface tension σ, for it requires

the minimization in two dimensions instead of in

one dimension [7].

For the boundary tension τb, the spacial struc-

ture is like that in Fig. 4(b). If we define an

x, z coordinate system in the plane of the figure,

with origin at the boundary between the surface

phases, and with the x axis parallel to the plane

of the αγ interface and the z axis perpendicular

to it. Then

τb = min{ρi}

∫ ∞

−∞

(∫ ∞

−∞
Ψdz − σ∗αγ

)
(9)

with σ∗αγ now the common value of the surface

tensions for the two surface phases [7].

To illustrate several kinds of the wetting transi-

tions in the density-functional models, consider

the three-phase equilibrium of a two-component

system. The function F in Eq. (6) is taken to be

F (ρ1, ρ2; a, b) a function of two densities ρ1, ρ2

and two field parameters a, b [9]. As mentioned

earlier the function F has a common minimum

value of 0 when ρ1, ρ2 are the densities of the

three coexisting phases α, β, and γ:

α : ρ1 = −1, ρ2 = 0;

β : ρ1 = 0, ρ2 = b; (10)

γ : ρ1 = 1, ρ2 = 0;

The parameter b is a thermodynamic field pa-

rameter that induces wetting; a is an anisotropy

parameter that, as we will see, determines the
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Fig. 5. Global phase diagram of wetting transitions in the

plane of two thermodynamic field variables a, b.

character of the wetting transition. It is the ra-

tio a1/a2 of two axes, parallel to the ρ1 and ρ2

axes, of elliptical contours of constant F in the

ρ1, ρ2 plane in the neighborhood of the bulk β

phase.

4.2. Order of Wetting Transitions

From the numerical calculation, one can de-

termine the locus of wetting-transition points in

the a, b plane, as shown in Fig. 5. In states a, b

above and to the left of the transition locus, the

αγ interface is not wet by β; in states a, b be-

low and to the right, the αγ interface is wet by β.

The character of the wetting transition observed

as decreasing b with a fixed depends on the fixed

value of a. The wetting transition is of first order,

as in Fig. 2(a), when a > 1. It is, however, of

second order, as in Fig. 2(b), when a = 1. The

transition point bw(a) is positive and a continu-

ous function of a in the range a ≥ 1. But when

a < 1, the locus bw(a) becomes identical to 0,

the transitions are nonuniversal critical wetting

transitions, and the critical exponents are found

to be 2/(1 − a). That is, in the range a < 1, the

exponents varies with a and becomes infinite as

a → 1 from below. At a = 1, there is a vertical

segment of the transition locus. When any point

of the vertical segment is approached by chang-

ing a with fixed b, then σαβ +σβγ−σαγ vanishes

proportionally to exp[−c/(1 − a)] with a posi-

-0.3

 0

 0.3

 0.6

 0.4  0.6  0.8  1

b

τ

τβ

Fig. 6. Line tension τ and boundary tension τb as functions

of b.

tive constant c, so the wetting transitions are all

of infinite order.

4.3 Behavior of Line Tension

In an earlier study [7,8] the fluid structure near

the contact line of the three coexisting phases

and the line tension associated with the con-

tact line have been calculated for the density-

functional model with two different F ’s: F1 and

F2. The F1(ρ1, ρ2; b, ε) is a function of two field

variables b and ε. This is always positive except

at the composition of α and γ phases, where it is

0. When ε �= 0, these are the only phases that

may coexist. When ε = 0 the β phase may co-

exist with α and γ, and F1 = 0 there also. It

is confirmed that this model with ε = 0 exhibits

the first-order wetting transition when b = bw

and that it also exhibits the prewetting transitions

on a line b = b(ε) in the two-phase coexistence

region. The model with F2 is the spacial case

(a = 1) of the earlier models F (ρ1, ρ2; a, b). This

exhibits the second-order wetting transition.

Figure 6 shows the line tension τ and the

boundary tension τb as functions of b. In this

model, for b > bw (and ε = 0) the three phases

coexist and the αγ interface is not wet by β, so

there is a contact line with the line tension τ .

In the range b < bw there is a prewetting line

b = b(ε) which corresponds to the line CW in

Fig. 3 and there may be a surface boundary with
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the boundary tension τb. When b approaches bw,

the line tension τ changes its sign from negative

to positive values, as remarked earlier, and ap-

proaches a positive value τw. When b(ε) goes

to bw as ε → 0, the boundary tension τb in-

creases and approaches τw. Both τ and τb in-

creases rapidly as the wetting transition is ap-

proached as seen in the figure as a cusp. In fact,

the approach of τ to τw is found to follow

τ ∼ τw − c1

√
b− bw ln[1/(b− bw)] (11)

the analytical result derived by Indekeu for an

interface-potential model of short-range forces

[10, 11]. Also the behavior of τb near the wet-

ting transition agrees with

τb ∼ τw − c4

√√√√ bw − b

ln
[

1
bw−b

] (12)

which follows from the result of Hauge and

Schick [4] and that of Indekeu [10].

Indekeu had shown from the interface-

displacement model that with short-range forces

in mean-field approximation, on approach to

a second-order wetting transition, τ vanishes

through a range of negative values proportionally

to the first power of the contact angle β, or,

τ ∼ −k(b− bw), (13)

with a positive constant k [10]. In the mean-field

density-functional model with F2, the numerical

calculation of τ demonstrates that Eq. (13) in-

deed holds for the second-order wetting [8].

The different behaviors of τ near the first-

order and second-order wetting transitions are

related to different structures of the fluid in the

neighborhood of the contact line near the wetting

transition. Figure 7 shows as contour plots the

spacial variations of ρ1 near the first-order and

second-order wetting transitions. The distinction

between the two cases is clear. The contours of

constant ρ1 in a state close to the first-order wet-

ting have a fork-like shape. It is similar to those
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Fig. 7. Spatial variations of ρ1 in the neighborhood of the

contact line near the wetting transition: (a) Contour plots

for the model of the first-order wetting; (b) Plots for the

model of the second-order wetting.

of constant ρ1 in the neighborhood of the bound-

ary between two surface phases in the αγ plane

at the prewetting transition. Both structures ulti-

mately become identical in the limit of the wet-

ting transition where τ and τb have a common

value τw. On the other hand, the contours in a

state close to the second-order wetting are gently

curved in the three-phase contact region. These

are in accord with the analogous picture found in

the interface-displacement model [10, 11].

5. Summary
The wetting transition in the three-phase

(α, β, γ) coexisting system is reviewed. The

transition between states in which the β phase

does and does not wet the αγ interface is associ-

ated with the transition between two conditions
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σαγ = σαβ + σβγ and σαγ < σαβ + σβγ , re-

spectively. The transition may be of first, second,

or higher-than-second order. Density-functional

models of wetting are recalled which exhibit

those different kinds of wetting transition. In the

class of models, the character of wetting is de-

termined by an anisotropy parameter a. This pa-

rameter reflects the ratio of characteristic physi-

cal length scales of the problem. They appear in

the form of decay lengths of ρ1 and ρ2 to their

values of the bulk β phase.

The line tension τ is associated with a three-

phase contact region and the boundary tension

τb is associated with a surface-phase bound-

ary at the prewetting transition. The behav-

ior of the line tension and the boundary ten-

sion near the first-order wetting transition as ob-

tained from the density-functional models is pre-

sented. It was remarked that the different behav-

iors of the line tension near the first-order and

second-order wetting transitions reflect the dif-

ferent fluid structures near the three-phase con-

tact region in the two cases.

References

[1] J. S. Rowlinson and B. Widom, Molecu-
lar Theory of Capillarity (Oxford U. Press,

1982), §8.5.

[2] D. Bonn, J. Eggers, J. Indekeu, J. Meu-

nier, and E. Rolley, Rev. Mod. Phys. 81, 739

(2009).

[3] D. Ross, D. Bonn, and J. Meunier, Nature
400, 737 (1999).

[4] E. H. Hauge and M. Schick, Phys. Rev. B 27,

4288 (1983).

[5] J. S. Rowlinson, J. Stat. Phys. 20, 197

(1979). This is an English translation of the

original paper by J. D. van der Waals.

[6] I. Szleifer and B. Widom, Mol. Phys. 75, 925

(1992).

[7] K. Koga and B. Widom, J. Chem. Phys. 127,

064704 (2007).

[8] K. Koga and B. Widom, J. Chem. Phys. 128,
114716 (2008).

[9] K. Koga, J.O. Indekeu, and B. Widom, Phys.
Rev. Lett. 104 036101 (2010).

[10] J.O. Indekeu, Physica A 183, 439 (1992).

[11] J.O. Indekeu, Int. J. Mod. Phys. B 8, 309

(1994).

Review of Polarography, Vol.56, No.1, (2010)




