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A class of density-functional models for wetting transitions is defined. A necessary condition for the

transitions to be of higher than first order is derived. A locus of wetting transitions in the plane of two

model field variables is determined on which there are states of first-order and of higher-order, including

infinite-order, transitions. The observed behavior is rationalized via a different but related, analytically

soluble model.
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In this Letter, we pose and answer the following funda-
mental questions. What is the global wetting phase dia-
gram for a class of standard density-functional models of
three-phase equilibrium with two components? Given that
the models possess a minimal number of two parameters,
one control parameter b for inducing wetting and one
anisotropy parameter a that influences the order of the
wetting phase transition, what kinds of wetting transitions
are predicted? How robust is the classical second-order
wetting transition, found for the symmetric model (a ¼ 1),
to the introduction of asymmetry (a � 1)? Furthermore,
we uncover a family of infinite-order wetting transitions at
the heart of the model, in the symmetric limit (a ! 1), and
robust to changes in the control parameter b.

When three phases are in equilibrium it may be that one
‘‘wets’’ (spreads at) the interface between the other two, or,
alternatively, they may meet along a line of common con-
tact of all three with three nonvanishing contact angles.
The transition between those two modes of three-phase
equilibrium is termed a wetting transition. It has been the
subject of much interest and of many reviews, as in
Refs. [1–7]. Here we study, partly analytically and partly
numerically, a class of mean-field density-functional mod-
els with wetting transitions, both of the first and of higher
than first order. We determine in the context of the models
the conditions that govern the order of the transition and
the exponents that characterize the thermodynamic singu-
larities at the transition.

The model free-energy densities � in this study are of
the form

� ¼ F½�1ðzÞ; �2ðzÞ; a; b� þ 1
2½�0

1ðzÞ2 þ �0
2ðzÞ2�; (1)

where �1ðzÞ and �2ðzÞ are two densities that vary in the
direction z perpendicular to an assumed planar interface
and a and b are two thermodynamic field variables. For
every a and b under consideration, the function F has a
common minimum value of 0 when �1, �2 are the densities
in the interiors of the three coexisting phases �, �, and �,
at z ¼ �1:

�: �1 ¼ �1; �2 ¼ 0;

�: �1 ¼ 0; �2 ¼ b;

�: �1 ¼ 1; �2 ¼ 0:

(2)

The tensions ���, etc., of the three interfaces are obtained

by minimizing the functional

� ¼
Z 1

�1
�dz (3)

with respect to variations in �1ðzÞ and �2ðzÞ, subject to the
boundary conditions (2) at z ¼ �1. The Euler-Lagrange
equations for the �1ðzÞ and �2ðzÞ that minimize the func-
tional in (3) are

@F=@�1 ¼ d2�1=dz
2; @F=@�2 ¼ d2�2=dz

2; (4)

to be solved subject to those boundary conditions.
We contemplate the wetting or nonwetting of the ��

interface by the � phase. Figure 1 shows schematically
the solutions of (4) in these circumstances. Figures 1(a) and
1(b) show �1ðzÞ and �2ðzÞ in the �� interface with the bulk
� phase at z ¼ �1 and the � phase at z ¼ þ1. The ��
interface is similar, but with the boundary conditions in (2)
for � replacing those for �. Figures 1(c) and 1(d) are for
the �� interface when it is not wet by the � phase, while
Figs. 1(e) and 1(f) are for the �� interface when it is wet
by �. In Fig. 1(d), showing �2ðzÞ in the nonwet �� inter-
face, �2 reaches a maximum value b0 that is less than
its value b in the bulk � phase. The dashed lines in the
interior of the �� interface, at �1 ¼ 0 in Fig. 1(e) and at
�2 ¼ b in Fig. 1(f), indicate the infinite (i.e., macroscopic)
thickness of the � layer intruding in that interface when it
is wet by �.
When none of the interfaces between pairs of phases is

wet by the third phase, the three interfacial tensions satisfy
triangle inequalities of the form below; when the �� inter-
face is wet by �, they satisfy the equality:

nonwet : ��� < ��� þ ���;

wet : ��� ¼ ��� þ ���:
(5)
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The transition between these two modes is the wetting
transition. Our concern is with how ��� þ ��� � ���

vanishes as the parameter b approaches its value bw at
the wetting transition, where bw is then itself a function of
the parameter a. There will be a one-dimensional manifold
of wetting-transition points in the a, b plane. At the first-
order wetting transitions, ��� þ ��� � ��� vanishes pro-

portionally to the first power of the distance from the
transition locus in the a, b plane; at the higher-order
transitions, it vanishes with a greater than first power or
exponentially rapidly for an infinite-order transition.

In the immediate neighborhood of the bulk � phase,
where �1 ¼ 0 and �2 ¼ b, our model Fð�1; �2;a; bÞ will
take the form

Fð�1; �2; a; bÞ ¼ ð�1=a1Þ2 þ ½ðb� �2Þ=a2�2; (6)

where the anisotropy parameter is now a ¼ a1=a2.
Contours of constant F in the �1, �2 plane in the neighbor-
hood of that point, for fixed a and b, are then ellipses with

semiaxes a1
ffiffiffiffi
F

p
and a2

ffiffiffiffi
F

p
in the directions of the �1 and

�2 axes, respectively. In what follows, it will be seen that it
is the parameter a that determines the character of the
wetting transition.

The field variable b typically depends on temperature,
chemical potentials, external fields, or some combination
of these, and it acts as a control parameter that can induce
wetting through changes in these external influences. The
variable a is typically associated with the ratio of two
competing length scales [8]. The length scales govern the
spatial approach of the densities �1 and �2 toward their
values in a bulk phase, and the ratio reflects an asymmetry
(a ¼ 1 for the symmetric case) which is generally inde-
pendent of temperature but may depend on, for example,
uniaxial anisotropy (for magnets) [9] or the Ginzburg-

Landau parameter (for superconductors) [10]. These two
examples outside the field of fluids illustrate the wide
applicability of the class of models we discuss. As regards
fluids, we assume short-range interactions. van der Waals
forces, which can affect wetting behavior qualitatively
[3,4,7], are not allowed for.
Figure 2 shows schematically, as trajectories in the �1,

�2 plane, how �1 and �2 vary together through the three
interfaces. They are obtained in principle by eliminating z
from �1ðzÞ and �2ðzÞ, thus obtaining �2 as a function of �1.
The solid curve in the figure is a composite of the �� and
�� interfaces and is then also the corresponding trajectory
for the �� interface when it is wet by �. The dashed curve
is for the �� interface when it is not wet by �. On this
nonwetting trajectory, �2 reaches a maximum at b0 < b, as
in Fig. 1(d). While b > bw, the tension��� associated with

the nonwetting trajectory is less than the sum ��� þ ���

associated with the composite wetting trajectory, but they
become equal at b ¼ bw. For a first-order transition, the
equality is achieved while the wetting and nonwetting
trajectories are still distinct, so the structure of the ��
interface is discontinuous at the transition. At a higher-
order wetting transition, by contrast, the equality (5) is
achieved only when the dashed curve in Fig. 2 has become
identical with the solid curve. The structure of the ��
interface is then continuous at the transition.
From Eqs. (4) and their first integral F ¼ ð1=2Þ�

½�0
1ðzÞ2 þ �0

2ðzÞ2�, one finds the �1, �2 trajectories in
Fig. 2 to satisfy the differential equation

F
d2�2

d�1
2
¼ 1

2

�
1þ

�
d�2

d�1

�
2
��

@F

@�2

� @F

@�1

d�2

d�1

�
: (7)

One consequence of (7) is that in the neighborhood of each
of the three bulk-phase points in the �1, �2 plane, where
the contours of constant F are elliptical, the trajectory on
entering or departing that point must do so tangentially to
the long axes of the ellipses. Thus, in the example of Fig. 2,
the long axes at all three bulk-phase points have been
supposed horizontal. In particular, for the �-phase point
�1 ¼ 0, �2 ¼ b in Fig. 2, this means we were implicitly
taking the a1 and a2 in (6) to be such that a1=a2 > 1. A

ρ1

ρ2

b

1-1

bo

FIG. 2. �� interfacial trajectories in the �1, �2 plane. Solid
curve wetting and dashed curve nonwetting. Phase � at �1 ¼
�1, �2 ¼ 0; phase � at �1 ¼ 0, �2 ¼ b; phase � at �1 ¼ 1,
�2 ¼ 0.
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FIG. 1. (a), (b) �1ðzÞ and �2ðzÞ in the �� interface. (c),
(d) �1ðzÞ and �2ðzÞ in the nonwet �� interface. (e), (f) �1ðzÞ
and �2ðzÞ in the �� interface wet by �.

PRL 104, 036101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

22 JANUARY 2010

036101-2



second, related consequence of (7) is that on the wetting
trajectory, near the � phase, if a1=a2 < 2, then

b� �2 ¼ Aj�1ja1=a2 (8)

with A a positive proportionality factor. When a1=a2 > 2,
the leading exponent in (8) remains 2; thus, b� �2 ¼
A0�1

2. But in this case, the coefficient A0 is itself propor-
tional to the coefficient of the further term ðb� �2Þ�1

2 in
the expansion of F about b� �2 ¼ 0, �1 ¼ 0; so if, by
some special symmetry of F, that term is absent in the
expansion, the exponent of the leading term in (8) reverts to
a1=a2 even when a1=a2 > 2.

The third consequence of (7) we wish to note here is that
on the nonwetting trajectory in Fig. 2, which passes
through the point �1 ¼ 0, �2 ¼ b0 < b, we have near
that point,

b0 � �2 � 1

2ðb� b0Þ�1
2: (9)

If the wetting transition is of higher order, then, as re-
marked earlier, the two trajectories in Fig. 2 become iden-
tical at the transition; so, in particular, b0 ! bð! bwÞ. But
(9) says that the second derivative of �2 with respect to �1

on the nonwetting trajectory diverges as b0 ! b. Then
from this property of the nonwetting trajectory, and from
(8) for the wetting trajectory, we have a1=a2 < 2 as a
necessary condition for the transition to be of higher order.
Therefore, a1=a2 � 2 is equally well a sufficient condition
for the transition to be of first order. In one of the models

studied earlier [11,12], a1=a2 ¼
ffiffiffi
3

p
=b and bw ¼

0:510 � � � , so a1=a2 > 2 at the transition. For that model,
b� �2 vanishes proportionally to �1

2 on the wetting tra-
jectory, as expected, but since the exponent is still not less
than 2, the transition must be of first order, as it was found
to be, in agreement with the principle enunciated above. In
another model studied earlier [13], a1=a2 ¼ 1, so it sat-
isfies the necessary condition for a higher-order transition
and was indeed found to be a classical second-order tran-
sition, again consistently with the principle. We will have
a1=a2 < 2 (in fact, we will have a1=a2 � 1) at all the
higher-order transitions that occur in the models studied
here.

For the class of models treated here the Fð�1; �2;a; bÞ in
(1) is taken to be a standard triple-well potential

Fð�1; �2;a; bÞ ¼ ½ð�1 þ 1Þ2 þ �2
2�½ð�1 � 1Þ2 þ �2

2�
� ½ð�1=aÞ2 þ ð�2 � bÞ2�; (10)

for which, indeed, a1=a2 ¼ a.
From the numerical analysis described below, we find

the locus of wetting-transition points in the a, b plane to be
as shown in Fig. 3. In states a, b above and to the left of the
transition locus, the �� interface is not wet by �; in states
a, b below and to the right, the �� interface is wet by �.
The vertical segment in the transition locus at a ¼ 1 ex-

tends from b ¼ 0 to b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p � 3
p

¼ 0:681 � � � [13],

which will be denoted bw2. This point a ¼ 1, b ¼ bw2 is
where the wetting transition changes from higher than first
order when a � 1 and b � bw2 to first order when a > 1
and b > bw2.
The earlier study [13], referred to above, was for the

special case of (10) in which a ¼ 1. It was found there that
as b ! bw ¼ bw2 from above, ��� þ ��� � ��� van-

ishes proportionally to ðb� bwÞ2, so it is then a classical
second-order transition. For 0< a< 1 the wetting transi-
tion as found here numerically occurs when b ! 0 and is
found to be of higher order with ��� þ ��� � ��� van-

ishing proportionally to b2=ð1�aÞ. We note that the exponent
is not universal but depends on the parameter a. Further,
we find that when any point a ¼ 1, b < bw2 on the vertical
segment of the wetting-transition locus is approached as
a ! 1 from below with b fixed, ��� þ ��� � ��� then

vanishes proportionally to exp½�c=ð1� aÞ�with a positive
constant c, so these wetting transitions are all of infinite
order.
We note that the necessary condition a1=a2 < 2 for the

transition to be of higher than first order is satisfied here for
all of these cases we have so far referred to in which a � 1.
For the range 1< a< 2, the condition allows but does not
require the transitions to be of higher than first order, and
we find them in fact to be of first order, although we do not
know of any general criterion that required it. For a � 2,
the criterion requires the transitions to be of first order, as
we find them to be.
Following a brief description of the numerical proce-

dures that led to this picture, we introduce a different but
related, analytically soluble model with which we are able
to rationalize these results of the numerical calculations.
The densities �1ðzÞ and �2ðzÞ for each interface are

obtained by numerically solving (4) subject to the bound-
ary conditions (2). The differential equations are approxi-
mated by five-point difference equations on a uniform grid
in z and then solved iteratively with a successive over-

 0

 0.5

 1

 0  1  2  3

b

a

wet

nonwet

FIG. 3. Locus of wetting transitions in the a, b plane. On the
horizontal segment (line with dots) at b ¼ 0, 0< a< 1, the
transition is of higher than first order; on the vertical segment

(thick line) at a ¼ 1, 0< b<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p � 3
p

¼ 0:681 � � � 	 bw2, it
is of infinite order; on the solid curve at a > 1, it is of first order.
In states above and to the left of the transition locus, the ��
interface is not wet by �; on states below and to the right of it,
the �� interface is wet by �.
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relaxation method. The range of z is taken to be ½�10; 10�,
½�20; 20�, or ½�40; 40� and is discretized with a grid
spacing of 0.01. The criterion for convergence is a rms
difference of less than 1� 10�14 between iterates. The
surface tensions ���ð¼ ���Þ and ��� are then obtained,

via (3), as functions of b with a fixed in a range 0< a< 3
or as functions of a with b fixed. We note that the calcu-
lation of ��� becomes increasingly difficult as b goes to

bw or as a goes to 1 on approach to the locus of continuous
wetting transitions. The lower limit of b or the upper limit
of a is taken to be that where the calculation of ���

completes typically within 24 hours with an eight-core
3 GHz Intel Xeon processor.

Now we introduce an analytically soluble model. This
model, too, has a free-energy density � of the form (1)
with the functionF as described below it. As in the density-
functional models studied above, �1ðzÞ and �2ðzÞ of the��
and �� interfaces are those which minimize

R
�dz, or

equivalently the solutions of (4), subject to the boundary
conditions (2). When the densities are close to those in the
bulk � phase at z ¼ þ1 and b is close to 0, one finds

j�1ðzÞj ¼ k1e
�z=a1 ; b� �2ðzÞ ¼ k2be

�z=a2 ; (11)

where k1, k2 are some positive constants. Eliminating z
from (11) results in the wetting trajectory of the form (8).
The coefficient A in (8) is thus identified as k2b=k1

a, where
a ¼ a1=a2. It is now supposed that, in the �1, �2 plane, the
nonwetting trajectory differs from the wetting trajectory
only in some small range of j�1j<�


1 where F is of the
form (6): it is taken to intersect the wetting trajectory at
j�1j ¼ �


1 and to become identical to it for �

1 < j�1j< 1.

These suppositions are not true of the original model, so we
have now in effect defined a different, but clearly related,
model. Now the density profiles �1ðzÞ and �2ðzÞ for the
nonwetting interface, too, consist of two parts, of which the
one corresponding to the trajectory in the range j�1j< �


1

is obtained as analytical solutions of (4) subject to the
boundary conditions �1 ¼ 0, �2 ¼ b0 < b and j�1j ¼
�

1, �2 ¼ b� A�
a

1 . The surface tension ��� is then ob-

tained by minimizing (3) with respect to the variation in the
intersection point �


1. The final result for a < 1 is

���þ�������¼k21ð1�a2Þ
a2a

2

�
k2
k1

a

aþ1
b

�
2=ð1�aÞ

: (12)

The right-hand side is greater than 0 as required; it vanishes

proportionally to b2=ð1�aÞ as b ! 0 for fixed a and vanishes
exponentially rapidly as a goes to 1 from below for fixed
b < 2k1=k2. These analytical results are in excellent agree-
ment with, and may be taken to explain, the numerical
results for the density-functional models with 0< a< 1
including the limit of a ! 1 from below. Our calculation
here is in the same spirit as in previous interface potential
approaches for two-component order parameters [8–10].

In conclusion, we have shown that the classical second-
order wetting transition found for a standard density-

functional model (a ¼ 1) is notably sensitive to any per-
turbation that introduces an asymmetry in the character-
istic length scales of the spatial variation of the two order
parameters. For a > 1 classical first-order transitions are
predicted. For a < 1 nonuniversal critical wetting transi-
tions are found, with critical exponents that vary continu-
ously with a. This is reminiscent of the wetting transition at
a wall studied by asymmetric two-component mean-field
models [8] and by a nonlocal interface Hamiltonian theory
which fully captures the effects of thermal fluctuations
[14]. Beside these wetting transitions, a family of
infinite-order wetting transitions emerge as a function of
the asymmetry parameter in the symmetric limit (a ! 1).
For the infinite-order transitions to occur, no special tuning
of the control parameter b is needed, while for all of the
other first-order, second-order, and nonuniversal critical
wetting transitions, b must be tuned to a specific value
bwðaÞ that depends on a. In sum, infinite-order transitions
take a central rather than peripheral place among wetting
transitions.
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