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We consider a mean-field density-functional model for three-phase equilibria and wetting. The model features
two densities and two control parameters, one of which is related to order parameter asymmetry or spatial
anisotropy. The global wetting phase diagram in the space of these two parameters is rich. It features first-order,
second-order, continuously-varying-order and infinite-order wetting transitions. The divergence of the wetting
layer thickness is usually logarithmic as a function of the distance to the transition, but, in contrast, algebraic
upon approach of an infinite-order transition. Further, an approximate interface potential approach is proposed,
which allows us to derive analytic predictions for the singular behaviour of thermodynamic functions near
wetting, in accordance with accurate numerical computations. It is conjectured that previously developed
mean-field models, such as, for example, one for ferromagnets with cubic anisotropy also contain a segment of
infinite-order transitions. We speculate that the possibility of varying the spatial anisotropy of the magnetic
interaction in these systems might well lead the way towards the first experimental realization of infinite-order
wetting.
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1. Introduction

The sensitivity of wetting phenomena and in particular

(equilibrium) wetting phase transitions to details of the

physico-chemical properties of substrate and adsorbate

is remarkable and has been the subject of many

investigations [1]. Recently it has been shown that the

order of the wetting transition can be varied over an

impressive range, from first to infinite order, as a result

of small modifications in the parameters of a ‘minimal’

mean-field density functional model for a three-phase

equilibrium with two spatially varying densities [2].

While some aspects of these findings are reminiscent of

earlier discoveries, such as the possibility of wetting

transitions with continuously varying order and non-

universal critical exponents in systems with a two-

component order parameter [3], the appearance of

infinite-order transitions in a standard model for

wetting is unexpected. The present paper aims at a

deeper understanding of these findings, especially

through a more detailed analysis of the analytical

calculations and approximations that quantitatively

reproduce, or predict, and explain the main computa-

tional (numerical) results.
Consider three phases, �, � and �, and their mutual

interfaces, that meet along a line of common contact

[Figure 1(a)]. Alternatively, one of the three phases,

say �, may intrude between the other two, and only

two interfaces result, which do not intersect

[Figure 1(b)]. The first possibility is termed partial

wetting (or incomplete wetting), or simply nonwet , and

the second complete wetting, or simply wet . In the

latter case, the phases are ordered along the z-direc-

tion, which is perpendicular to the interfaces.

The transition between the two possibilities is termed

the wetting phase transition and it arises when one

of the dihedral contact angles in the configuration of

Figure 1(a), for example the angle between the �� and

�� interfaces, becomes zero. The following triangle

inequality between the interfacial tensions [4] is satis-

fied in all considered configurations,

��� � ��� þ ��� , ð1Þ
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the equality being reserved for complete wetting and

the strict inequality for partial wetting. As usual, the

spreading coefficient is defined through

S ¼ ��� � ð��� þ ���Þ: ð2Þ

In thermodynamic equilibrium, S� 0, in view of (1).
Density-functional theories of interfacial structure

and tension and of surface phase transitions (wetting

transitions) have been brilliantly applied and reviewed

by Bob Evans [5–7]. The mean-field density-functional

model we study here is characterized by the following

functional of two spatially varying densities �1ðrÞ and
�2ðrÞ, giving the excess free energy per unit area of an

interface, oriented perpendicular to z,

�̂½�1, �2� ¼

Z 1
�1

dz

��
1

2
ðr�1ðrÞÞ

2
þ
1

2
ðr�2ðrÞÞ

2

þ Fð�1ðrÞ, �2ðrÞ; a, bÞ

��
fx,yg

, ð3Þ

where the outer brackets denote that the integrand is

averaged over the directions x and y parallel to the

interface and the free-energy density (per unit volume)

F is the following sixth-order polynomial function

Fð�1, �2; a, bÞ ¼ ð�1 þ 1Þ2 þ �22
� �

ð�1=aÞ
2
þ ð�2 � bÞ2

� �
� ð�1 � 1Þ2 þ �22
� �

: ð4Þ

The model features (only) two parameters, a and b.

The latter, b, is a control parameter that allows wetting

to be induced, and the value of b at wetting is denoted

by bw. Although, dimensionally, it stands on the same

footing as the density �2, it is physically more akin to a

field variable through its (possible) dependence on

temperature, chemical potentials, external magnetic or

electric fields, or some combination of these. The
former, a, is in general an asymmetry parameter, a¼ 1

being its symmetric value. This asymmetry parameter
can, in some systems, be related to spatial anisotropy.

We will discuss concrete examples of asymmetry and

anisotropy further on.
Clearly, for arbitrary a and b, F reaches its

minimum value, equal to zero, when the densities

reach their values appropriate to each of the bulk
phases �, � and �, at z ¼ �1. These densities are

� phase: �1 ¼ �1, �2 ¼ 0,

� phase: �1 ¼ 0, �2 ¼ b,

� phase: �1 ¼ 1, �2 ¼ 0:

ð5Þ

We treat our problem in mean-field theory and neglect

the dependence of the densities on the directions x and
y parallel to the interface. Then, the equilibrium

density profiles �1(z), �2(z) that minimize the func-

tional (3) can be viewed, in a mechanical analogy [4], as
least-action trajectories of a particle travelling in the

two-dimensional ð�1, �2Þ-space at time t � z, on a
triple-hill potential V � �F. The ‘boundary condi-

tions’ or ‘initial’ and ‘final’ conditions correspond to

the two bulk phases that are separated by the interface
that is being considered. For example, the interfacial

tension ��� is obtained by minimizing �̂½�1, �2� subject
to the boundary conditions that the bulk � phase is

reached at z ¼ �1 and the bulk � phase at z ¼ 1.
We consider the wetting or nonwetting of the ��

interface by the � phase. Figure 2 shows typical

equilibrium density profiles, corresponding to the ��
interface [Figure 2(a) and (b)], the nonwet �� interface
[Figure 2(c) and (d)] and the wet �� interface

[Figure 2(e) and (f)].
It is instructive to study the interfacial trajectories in

the ð�1, �2Þ-plane. Figure 3 shows the trajectories for the
nonwet and the wet �� interface. Using this picture, it is

possible to distinguish straightforwardly between a
first-order and a continuous (higher-order) wetting

transition. At a first-order wetting transition, the
interfacial tensions ��� for the nonwet (dashed) and

for the wet (solid) trajectory are equal, while the
trajectories do not coincide. That is, b0, the maximum

value of �2 in the nonwet a–y interface, is less then b, the

value of �2 in the � phase. Thus, the equilibrium
structure of the �� interface is discontinuous at first-

order wetting, in the sense that the equilibrium density
profiles change discontinuously from the ‘non-wet’ to

the ‘wet’ profiles. In contrast, at a continuous wetting

transition at bulk three-phase coexistence, for which we

Figure 1. Two possible configurations for three-phase equi-
librium. (a) Partial wetting: the three phases �, � and � are in
mutual contact. The three interfaces, with interfacial tensions
���, ��� and ��� meet at a common contact line. (b)
Complete wetting. Phase �, called the wetting phase, intrudes
between phases � and �.

1298 K. Koga et al.



adopt the familiar term ‘critical wetting’, the interfacial
tensions for the wet and non-wet trajectories become
equal only when the two trajectories coincide, asymp-
totically, in the limit b! bw, and consequently b0! b.

This paper is organized as follows. In Section 2 we
present an exploratory survey of various possible
wetting transitions, classified according to their
(increasing) order, and provide some concrete exam-
ples sampled from a diversity of systems. In Section 3
we turn to a detailed discussion of analytical approx-
imations useful for extracting the asymptotic proper-
ties, close to wetting, of our density-functional model.
In Section 4 a somewhat simpler density-functional
model is introduced, for which wetting transitions of
infinite order are possible. The paper closes with
conclusions and an outlook on a possible experimental
system that might display infinite-order wetting.

2. Reconnaissance

2.1. First-order wetting

The paradigm of a first-order wetting transition is that
which was studied by Moldover and Cahn [8] and by
Bonn and co-workers [9] in binary liquid mixtures
‘adsorbed’ at their common vapour (� phase). When a
small amount of water is added to a mixture of
methanol (� phase) and cyclohexane (� phase), the
liquid–vapour interface undergoes a qualitative change.
At very low water concentration x� 1 a gravity-
thinned1 wetting layer of methanol is present at the
cyclohexane–vapour interface (wet state), while a genu-
ine three-phase contact is apparent at higher water
content (nonwet state). In this nonwet state the ��
interface makes a finite contact angle � with the (nearly
horizontal) �� interface. At the transition between the
two regimes, at water concentration x ¼ xw, the spread-
ing coefficient vanishes, with a discontinuity in its slope,
as a function of x. We can characterize the singularity in
S at wetting by writing

S ¼ ���ðcos � � 1Þ / jx� xwj
2��s; with �s ¼ 1: ð6Þ

The critical exponent �s is usually referred to as the
‘surface specific heat exponent’ associated with the
wetting transition. In principle, it can take any value
less than or equal to 1. Clearly, for first-order wetting,
�s ¼ 1, since S vanishes proportionally to the first
power of the distance to the transition, measured in a
suitable field variable (in this case water
concentration).

In the density-functional model defined through (3)
the wetting transition is found to be of first order for
a4 1. Its locus is given by a curve bwðaÞ or awðbÞ,
depending on which parameter, b or a, is used to
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Figure 2. Density profiles as a function of the spatial
coordinate z. In (a) and (b) �1(z) and �2(z) are shown in
the �� interface. In (c) and (d) �1(z) and �2(z) are shown in
the �� interface when it is not wet by the � phase. In (d) �2
reaches a maximum value b0 that is less than its value b in the
bulk � phase. In (e) and (f) �1(z) and �2(z) are shown in the
�� interface when it is wet by the � phase. The dotted lines,
bridging the gap between the solid lines, in (e) and (f),
indicate the macroscopic (infinite) thickness of the wetting
layer of �.
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Figure 3. Computed trajectories in the ð�1, �2Þ-plane,
obtained by eliminating z from the density profiles �1(z)
and �2(z). The model parameters are a¼ 1.6 and b¼ 0.973.
They correspond to a first-order wetting transition.
The solid line is a composite of the �� and �� interfaces
and is therefore also the trajectory for the �� interface
when it is wet by �. The dashed curve is the trajectory
for the �� interface when it is not wet by �. The non-wet
and wet trajectories are clearly distinct, but the
corresponding interfacial structures have the same surface
free energy.
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control the distance to the transition. An example
of interfacial trajectories at first-order wetting, com-
puted in our model, is shown in Figure 3. It can be
proven that a sufficient condition for the wetting
transition to be of first order is a4 2 [2]. In this regard
we note that, in particular, for one of the mean-field
density functional models studied earlier [10,11] one
can calculate the corresponding value of a and verify
that a4 2 at the wetting transition. The transition was
found to be of first order, indeed.

2.2. Second-order wetting

Probably the best known second-order wetting
transition is the critical wetting transition of the two-
dimensional Ising model discovered by Abraham [12].
For that phenomenon one finds, e.g. upon approach of
the critical wetting temperature Tw,

S ¼ ���ðcos � � 1Þ / jT� Twj
2��s; with �s ¼ 0,

ð7Þ

implying a ‘parabolic’ vanishing of the spreading
coefficient at wetting (and a discontinuity in the
surface specific heat, which is defined here through
the second derivative of the spreading coefficient with
respect to temperature). For any critical wetting
transition, in particular this second-order one, there
is another critical exponent, �s, which is independent of
�s and which describes the divergence of the equilib-
rium wetting layer thickness ‘ upon approach of the
complete wetting state. One standardly writes

‘ / jT� Twj
�s; with in this case �s ¼ �1: ð8Þ

The exponent value �s ¼ �1 is not only found for
critical wetting in the two-dimensional Ising model,
for which thermal fluctuations are important, but also
for critical wetting in three-dimensional systems with
long-range forces (with algebraic decay), for which
thermal fluctuations are unimportant (mean-field
theory applies) [13]. In contrast, if we study second-
order wetting (�s ¼ 0) in systems with short-range
forces, then, typically the wetting layer thickness
diverges more weakly (logarithmically),

‘ / logðjT� Twj
�1Þ; so that �s ¼ 0ðlogÞ: ð9Þ

However, it was quite a surprise when, in 1999, in
binary liquid mixtures of nonane and methanol, mean-
field and short-range critical wetting signatures were
observed experimentally, i.e. �s ¼ 0 and �s ¼ 0(log)
[14]. Apparently, the critical wetting transitions in
those systems occur so close to the bulk critical point
that effects of long-range (van der Waals) forces are
negligible. Furthermore, thermal fluctuation effects

on short-range critical wetting were not observed.
This is consistent with the current insight that these
effects are expected to show up only extremely close to
the transition point [15].

In the context of our mean-field density-functional
model, in which long-range forces are fully ignored, a
(short-range) second-order wetting transition was
found for a¼ 1 (symmetric model), when b is lowered
towards bw ¼ 0:681 . . . [16]. For that transition,
2� �s ¼ 2, whence the qualification ‘second-order
wetting’, and we verified numerically that �s ¼ 0ðlogÞ,
as expected.

2.3. Third-order wetting

It may seem odd that third-order wetting transitions are
the subject of a separate subsection in our
Reconnaissance, but it is fully justified, not only because
transitions of higher than second order are found in our
density-functional model for a5 1, as we will discuss
shortly, but also because, remarkably, third-order
wetting transitions were predicted to occur in density
functional models for systems with long-range (van der
Waals) forces, and they have been observed experimen-
tally in liquid mixtures (e.g. pentane on water) [17]. For
that system, with phases � (water), � (pentane liquid)
and � (moist pentane vapour),

S ¼ ���ðcos � � 1Þ / jT� Twj
2��s; with �s ¼ �1,

ð10Þ

so that 2� �s ¼ 3, which is characteristic for critical
wetting in systems with non-retarded van der Waals
forces, and

‘ / jT� Twj
�s; with �s ¼ �1: ð11Þ

The latter result is quite generally a consequence of the
algebraic decay of the intermolecular forces.

Within our mean-field density-functional model, a
third-order wetting transition does not arise in an
isolated manner but rather as a non-special member of
a family of critical wetting transitions of continuously
varying order, as will be discussed next. For these
transitions the exponent �s varies as a function of the
asymmetry parameter a and the divergence of the
wetting layer thickness is found to be logarithmic
(�s ¼ 0ðlogÞ).

2.4. Non-universal wetting, with continuously
varying order

Since the pioneering work of Hauge it is well known
that inhomogeneous systems in which two different
length scales occur, can display non-universal critical
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wetting phenomena [3]. These two different lengths can
pertain to decay lengths associated with two distinct
order parameters or order parameter components. This
is the case we will be interested in here. Alternatively,
even in a single order parameter theory non-universal
wetting can arise when the decay length of the
‘wall potential’ varies relative to the bulk correlation
length [18].

Before turning to the manifestation of
non-universal wetting in our density-functional
model, we discuss briefly two concrete physical systems
for which non-universal critical wetting exponents have
been identified. The first of these is a two-component
magnetic vector model with cubic anisotropy [19] and
the second is a type-I superconductor with surface
enhancement of superconductivity [20].

2.4.1. Ferromagnet with cubic anisotropy

The order parameters in this anisotropic vector model
of a semi-infinite ferromagnet are the components Mx

and My of a magnetization function MðzÞ. They play
roles similar to those of our densities �1 and �2.
Particularly relevant for us is to examine how the
anisotropy is defined through parameters entering the
free-energy density FðM Þ, which in zero external
magnetic field is taken to be of the form

FðM; �Þ ¼
t

2
M 	Mþ

1

4
M 	Mð Þ

2
þ�M2

xM
2
y, ð12Þ

with t � ðT� TcÞ=Tcð50Þ the reduced temperature and
Tc the Curie temperature.

In the absence of crystal lattice anisotropy the
isotropic form, with �¼ 0, applies. In the presence of
cubic anisotropy the magnetization preferentially
aligns along a crystal axis, x or y, for �4 0, and
along a body diagonal for �5 0. We now examine how
the anisotropy parameter � can be related to our
asymmetry variable a introduced in (4). From now on
we focus on the regime �4 0. In this regime, four bulk
phases, with magnetizations M ¼ ð�ð�tÞ1=2, 0Þ and
M ¼ ð0, � ð�tÞ1=2Þ, coexist for t5 0 and zero bulk
field (see Figure 1 in [19]). We reconsider the example
discussed in [19] and assume that, without loss of
generality, the ‘A’ phase with bulk order parameter
MA ¼ ðð�tÞ

1=2, 0Þ is the wetting phase. To define the
relevant length scales it suffices to expand the free
energy density (12) to quadratic order about its
minimum at MA. In terms of the ‘potential energy’
VðM Þ � FðMAÞ � FðM Þ this gives

VðM;�Þ 
�
1

2

	0
	xð�Þ

� 	2

Mx�ð�tÞ
1=2

� �2
þ

	0
	yð�Þ

� 	2

M2
y

 !
,

ð13Þ

where 	0 is a constant reference length and 	i is a length
related to the (inverse) curvature of the potential along
the i-axis in the order parameter plane, which sets the
decay length for the i-component of the order param-
eter towards its value in bulk. Consistently with (4) we
now define the asymmetry parameter a through

1

a
�
	x
	y
¼

�

2


 �1=2
�


� 1

2

� 	1=2

, ð14Þ

where we defined 
 � 1þ � to allow easy comparison
with the anisotropy variable, 
�1, used in [19]. Clearly,
the ‘symmetric’ case for the wetting problem corre-
sponds to a¼ 1, or 
¼ 3 (�¼ 2). Note that this is
different from the value 
¼ 1 (�¼ 0), for which the
bulk free energy density is isotropic in M.

For a4 1 first-order wetting was predicted, while
for a5 1 critical wetting results, with the standard
(universal) second-order wetting exponent �s ¼ 0 for
05 a � 1=2 and a non-universal exponent
�s ¼ ð1� 2aÞ=ð1� aÞ or 2� �s ¼ 1=ð1� aÞ for 1=25
a5 1 [19]. Note that the order of the transition varies
continuously between 2 (the universal value valid for
a � 1=2) and arbitrarily high order (for a! 1).
However, for the symmetric case a¼ 1 a standard
second-order transition (�s ¼ 0) was established2. In all
critical wetting regimes (05 a � 1), a logarithmic
divergence of the wetting layer thickness was reported
(�s ¼ 0ðlogÞ).

2.4.2. Type-I superconductors with surface
enhancement

The two order parameters in this case are the complex
superconducting wave function  and the magnetic
vector potential A. In a suitable semi-infinite geometry
the Meissner state and the normal state of a type-I
superconductor can be described by the scaled real
(and positive) superconducting order parameter �(z)
and a scaled vector potential component AðzÞ, where z
is the distance from the surface into the material.
The wetting transition in this material (in which the
Meissner phase intrudes between the surface and the
normal phase) has been studied within Ginzburg–
Landau theory [20] and verified experimentally for
Sn [21]. A necessary condition for this transition to
occur is the presence of surface enhancement of
superconductivity, which can be induced by polishing
or ion bombardment of the surface [21]. The ‘asym-
metry’ in this system is fundamental and arises from
the qualitative difference between the superconducting
coherence length 	 and the magnetic penetration depth

. The ratio � ¼ 
=	 is a material constant (near the
bulk critical temperature Tc). In order to see how the
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asymmetry parameter a can be defined, we examine the

expansion of the bulk free energy density about the

order parameter values in the bulk superconducting

phase, � ¼ 1=� and A ¼ 0, where we follow the scaling

of the variables as employed in the second paper in

[20]. The potential energy is given by

Vð�,A; �Þ ¼
1

2
�2 �

1

2
A

2�2 �
1

4
�2�4 �

1

4�2
: ð15Þ

Expanding, to second order, about the bulk supercon-

ducting phase point, leads to

Vð�,A; �Þ 
 � ��
1

�

� 	2

�
A

2

2�2
: ð16Þ

Comparison with (4) allows us to define the asymmetry

parameter as

a ¼ 21=2�: ð17Þ

Guided by the seminal insight of Hauge [3] concerning

the possible dependence of critical wetting singularities

on the ratio of two competing lengths, the critical

wetting transition in type-I superconductors [20] was

scrutinized along similar lines of reasoning [22].

Mathematically, a branch with universal second-

order wetting exponents and a branch with non-

universal exponents that vary continuously with � are

possible. Specifically, for a5 1 critical wetting is

possible with the standard (universal) second-order

wetting exponent �s ¼ 0 for 05 a � 1=2 and with a

non-universal exponent �s ¼ ð1� 2aÞ=ð1� aÞ, or

2� �s ¼ 1=ð1� aÞ for 1=25 a5 1, corresponding to

critical wetting transitions of arbitrarily high order.

However, accurate model computations have shown

that a first-order wetting transition takes place for

05 �5 0:374 [20], which corresponds to 05 a

5 0:529. Consequently, only the non-universal critical

wetting transition is physically relevant in this system.

Further, a logarithmic divergence of the wetting layer

thickness at critical wetting was established

(�s ¼ 0ðlogÞ) [20].
The symmetric point in this model, a¼ 1, or

� ¼ 1=21=2, corresponds to the bulk multicritical tran-

sition between type-I and type-II superconductivity.

Consequently, for a� 1 a discussion of wetting tran-

sitions is meaningless since a stable interface between

Meissner and normal phases does not exist.

Notwithstanding the presence of this physical ‘frontier’

at a¼ 1, the wetting layer thickness displays an

interesting divergence when, coming from a partial

wetting, the limit a ! 1 is considered [22–25].

In particular, ‘ / ð1� aÞ�1, in this limit, but a

macroscopic wetting layer is thermodynamically

unstable for a¼ 1. Therefore, in this physical system
this divergence is not associated with a wetting
transition.

After this overview of the non-universal continuous
wetting transition in these two concrete systems, we
return to our density-functional model described
by (3). In this model a non-universal critical wetting
transition is found for a5 1, upon lowering b towards
bw ¼ 0 [2]. For this transition, �s ¼ ð1� 2aÞ=ð1� aÞ, or
2� �s ¼ 1=ð1� aÞ. Note that the order of the transi-
tion varies continuously and increases to an arbitrarily
high value for a ! 1. It is furthermore interesting to
note that, in contrast with expectations based on
previous models [3, 19, 20, 22], also for a5 1=2, and at
least down to values of a 
 0.2, non-universal
behaviour is found instead of the universal second-
order transition. Further, for a51, our computations
confirm a logarithmic divergence of the wetting layer
thickness (�s ¼ 0ðlogÞ) for b! bw ¼ 0, in line with the
predictions of the analytical approximations outlined
in Section 3.

2.5. Infinite-order wetting

Infinite-order wetting transitions have hitherto only
been encountered under rather special circumstances.
For example, a subregime of the intermediate (thermal)
fluctuation regime for wetting transitions in two
dimensions consists of infinite-order transitions [26].
It was therefore quite a surprise that they show up in a
mean-field density functional model with a multi-
component order parameter [2]. Previous studies of
similar models [3,19] missed them, presumably because
they do not occur when the obvious control parameter
of wetting is varied, but instead, they occur upon
varying the asymmetry parameter a, related to a ratio
of length scales associated with the decay of the order
parameter components. The obvious point of view is to
study wetting at arbitrary but fixed value of a.
Ironically, in the case of type-I superconductors an
infinite-order transition was the first to be uncovered
while studying wetting [23], but it is not a wetting
transition [20,22,25].

In our density-functional model a segment of
infinite-order critical wetting transitions is found for
a¼ 1 (symmetric case) and for 05 b5 bwð1Þ ¼
0:681 . . . [2]. This bwð1Þ is defined as the value of b at
the second-order wetting transition found for a¼ 1.
The singularity in the spreading coefficient near
wetting is predicted, based on analytic arguments, to
be of the form

�S / ðb=bwð1ÞÞ
2a=ð1�aÞ: ð18Þ

1302 K. Koga et al.



This can be cast in a form which more conspicuously

brings out the exponential singularity arising in the

limit a " 1,

�S / exp½�C=ð1� aÞ�; with C4 0: ð19Þ

This has been confirmed numerically. Interestingly as

well, we verified numerically and by analytical argu-

ments that the wetting layer thickness diverges in the

algebraic manner, for a " 1,

‘ / ð1� aÞ�1, ð20Þ

implying �s ¼ �1. This represents a much stronger

divergence than the logarithmic law found in the other

regimes discussed in this paper.
Figure 4 presents the global wetting phase diagram

of our model in the (a, b)-plane. The segments of first-

order (thin line; numerically computed), infinite-order

(thick line at a¼ 1) and continuously-varying-order

wetting transitions (line with dots at b¼ 0) are shown

as solid curves, together with the isolated second-order

transition point at a¼ 1. In states above and to the left

of the wetting phase boundary the �� interface is not

wet by �, while in the complementary sector it is wet

by �. The dashed curve in the figure for a4 1 is the

numerically determined limit of metastability of the

non-wet states in the region where the equilibrium

configuration is that of complete wetting. At points

(a, b) in the region below the dashed line we no longer

find a solution to the Euler–Lagrange equations for a

non-wetting trajectory such as in Figures 2(c) and (d)
or the dashed curve in Figure 3.

3. Analytical approximations to the model

Here we study our model from the point of view of
applying a constraint on the order parameter profiles,
and subsequently minimizing an effective free energy
function with respect to the constraint. Due to the
approximation of restricting the order parameter
profiles to a judiciously chosen subset of all suitable
functions, our approach is not exact for our model but
may still capture the correct singular behaviour of the
spreading coefficient S and the layer thickness ‘ near a
critical wetting transition (a� 1). Therefore, the pre-
dictions of this analytical approximation must be
checked against the results of ‘numerically exact’
model computations.

3.1. Interface potential approach

In this approach we follow closely the lines of
reasoning of, and experience gathered in, previous
works on two-component order parameters [3,19,22].
Two main assumptions enter: (i) an accurate descrip-
tion of the trajectories in the (�1,�2)-plane in the
vicinity of the �-phase point is essential for capturing
the correct thermodynamic singularities at critical
wetting; and (ii) a non-wet state can be parameterized
by a single ‘collective coordinate’, ‘, which ‘measures’
the thickness of the wetting layer and serves as an
effective scalar order parameter for wetting.

Assumption (i) prompts us to expand (4) to second
order about (0,b), which provides the approximation

Fð�1, �2; a, bÞ 
 Fð2Þð�1, �2; a, bÞ

�
A

2
ð�1=aÞ

2
þ ð�2 � bÞ2

� �
, ð21Þ

with A ¼ 2ð1þ b2Þ2 a (finite) prefactor. Solving the
Euler–Lagrange equations

@Fð2Þ=@�1 ¼ d2�1=dz
2, @Fð2Þ=@�2 ¼ d2�2=dz

2, ð22Þ

within this ‘harmonic’ approximation, leads to the
(general) solutions, expressed in the scaled distance
Z � A1=2z,

�1ðZÞ ¼ a1 expðZ=aÞ þ b1 expð�Z=aÞ,

�2ðZÞ ¼ bþ a2 expðZÞ þ b2 expð�ZÞ,
ð23Þ

and we define b
ð2Þ
0 � �2ð0Þ, where the superscript refers

to the harmonic approximation. Symmetry consider-
ations lead us to fix the position z¼ 0 to the ‘middle’ of
the layer of � and to restrict our attention to finding

0

0.5

1

0 1 2 3

b

a

Wet

Non-wet

Figure 4. Computed global wetting phase diagram in the
(a, b)-plane. The phase boundary between wet and non-wet
states consists of a segment of first-order wetting (a4 1; solid
line), a second-order wetting point (a ¼ 1, b ¼ bwð1Þ 

0:681), a segment of infinite-order wetting (a¼ 1; vertical
line), and a segment of wetting transitions of continuously
varying order (a5 1, b ¼ bw ¼ 0; line decorated with dots).
The thin dashed line a4 1 is the spinodal of the non-wet
states in the wet regime.
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solutions for z 2 ½0,1Þ with the boundary conditions,

or ‘initial conditions’ at z¼ 0,

�1ð0Þ ¼ 0,

d�2ðZÞ=dZj0 ¼ 0:
ð24Þ

These imply b1 ¼ �a1 and b2 ¼ a2. This still leaves two

parameters undetermined. We cannot (yet) impose the

‘final conditions’ for z!1 because our approxima-

tion F(2) to F is not useful in this limit. However,

following [3] we can eliminate one more parameter by

requiring that the first integral of the Euler–Lagrange

equation, E, be a ‘constant of the motion’ along the

entire trajectory. This constant can be determined, e.g.

in the bulk � phase, where the z-derivatives of the

densities as well as the function F attain the value zero,

E ¼
1

2
_�21 þ

1

2
_�22 � F ¼ 0: ð25Þ

Applying this at z¼ 0, where our approximation F(2) to

F is accurate (provided b
ð2Þ
0 is sufficiently close to b)

implies ða1=aÞ
2
¼ a22. Thus we have a2 ¼ �a1=a since

b
ð2Þ
0 � b ¼ 2a2 5 0 and a1 4 0 (because _�1ð0Þ4 0).

Further, note that ð�2 � b
ð2Þ
0 Þ=�1 � �Z=2 for small z,

so that the trajectory starts parallel to the �1-axis, from
the point ð0, b

ð2Þ
0 Þ, in the ð�1, �2Þ-plane.

Provided a1 is chosen sufficiently small, the

approximate (non-wet) trajectory that we are now

constructing, intersects, at a position denoted by

z ¼ z�, the exact wet trajectory associated with the

interface between the � and � phases, in the ð�1, �2Þ-
plane3. We now define a basically new model by

imposing that, for z4 z�, from the point of intersec-

tion up until the � phase point at (1, 0) our approx-

imate trajectory be identical to the exact wet trajectory

in the ð�1, �2Þ-plane. Figure 5 illustrates our strategy.

It is important to stress that, in the original model, the

non-wet trajectory does not intersect the exact wet

trajectory before both meet at the � phase point

(see Figures 3 or 5). The intersection we consider is

thus entirely an artifact of the different starting point

(at �2ð0Þ somewhere between b and the exact b0) of the

non-wet trajectory. The intersection is a property of

the new model, not present in the original model.
The �-� interfacial trajectory (i.e., the solid line

from � to � in Figure 5), denoted by �0, takes the

following form in the vicinity of the � phase,

�0,1ðZ
0Þ ¼ a0,1 expðZ

0=aÞ; with a0,1 4 0,

�0,2ðZ
0Þ ¼ bþ a0,2 expðZ

0Þ; with a0,2 5 0,
ð26Þ

with the convention that z 0 ¼ �1 in the � phase and

z 0 ¼ 0 corresponds to the ‘middle’ of the �� interface.

Assuming that z� remains finite when the wetting

transition is approached – an assumption which will be

checked on its self-consistency further on – we define

the scaled wetting layer thickness L � A1=2‘ as the

scaled distance from the point z ¼ z� to the point

0

0.3

–1 0 1

r 2

r1

a g

b

Figure 5. Computed trajectories in the ð�1, �2Þ-plane for a¼ 1/2, obtained by eliminating z from the density profiles �1(z) and
�2(z). The solid line, from phase point � to � through �, is a composite of the �� and �� interfaces and is therefore also the exact
trajectory for the �� interface when it is wet by �. Note that, because a5 1, this trajectory forms a cusp near �, in contrast with
typical wet trajectories for a4 1, which are flat near � (Figure 3). The (lower) dashed curve is the exact trajectory for the ��
interface when it is not wet by �. The (upper) thin dashed curve is one of many possible non-wet trajectories in the harmonic
approximation to the potential, which can be used only in the neighbourhood of the � phase point. It crosses the solid line in two
points (black dots). The approximate non-wet trajectory, on which our analytic arguments are built, is – by definition –
composed of the thin dashed curve, in between the crossings, and the solid line, on either side of the intersections. In between the
crossings, the approximate non-wet trajectory is based on �1ðZÞ ¼ 2a1 sinh 2Z and �2ðZÞ ¼ b� 4a1 coshZ, with, for illustrative
purposes in this figure, b¼ 0.3 and a1 ¼ b2=5 ¼ 0:018; cf. Note 3.
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z 0 ¼ 0. This then defines how the scaled distances Z0

and Z are related to one another,

Z 0 ¼ Z� ðZ� þ LÞ, ð27Þ

so that, in particular, Z 0� ¼ �L. Further, we will soon

establish how L depends on Z�.
Thus, at z ¼ z� we match our trajectory with

the wet solution and for z4 z� we follow the latter

up until the � phase. The matching conditions at

z ¼ z� read,

�1ðZ�Þ ¼ 2a1 sinhðZ�=aÞ ¼ �0,1ðZ
0
�Þ ¼ a0,1 expð�L=aÞ,

�2ðZ�Þ ¼ b� 2ða1=aÞ coshZ� ¼ �0,2ðZ
0
�Þ

¼ bþ a0,2 expð�LÞ: ð28Þ

From suitable combinations of these two conditions it

follows how L depends on Z� and vice versa, or, how

a1 depends on Z� and vice versa. For example, to

illustrate the former we can write

exp �L
1

a
� 1

� 	� 

¼ a
ja0,2j

a0,1

sinhðZ�=aÞ

coshZ�
, ð29Þ

which shows that, for fixed a and b, besides the (fixed)

parameters associated with the wet trajectory, only the

‘crossing’ distance Z� controls the wetting layer

thickness L associated with our one-parameter family

of approximations to the non-wet trajectory. It is

therefore useful to think of L as the (only) free

parameter left in our approach. It is important to keep

in mind that (29) is an approximate relationship, valid

only to leading order, for large L. Only in that limit it is

sufficient to work with just the leading terms, for

Z 0 ! �1, given in (26).
The surface free energy cost of the approximate

non-wet trajectory on the interval z 2 ½0, z�� is now

found using (3), (21), (23) and (28), and reads

�̂ð2Þ
½0,z��
¼

Z z�

0

dz
1

2
_�21 þ

1

2
_�22 þ Fð2Þð�1, �2Þ

� �

¼
A1=2

2

�
a20,2 tanhZ� expð�2LÞ

þ
a20,1
a

coth
Z�
a

expð�2L=aÞ

	
, ð30Þ

while on the interval z 2 ½z�,1� the surface free energy

cost of the approximate non-wet trajectory can be

denoted by ��� � �̂½z�,1� and corresponds to a large

fraction of the equilibrium interfacial tension ���.
We need not compute this fraction, because, as can be

seen by inspecting (2), it contributes equally to the

surface free energies of both the approximate non-wet

state and the exact wet state so that it gets cancelled

out in the spreading coefficient S.

Therefore, what remains to be calculated is the
harmonic approximation4 to the remaining fraction,
���, of the equilibrium interfacial tension ��� � ���þ
��� . This is achieved through

�ð2Þ�� ¼

Z �‘
�1

dz 0
1

2
_�20,1 þ

1

2
_�20,2 þ Fð2Þð�0,1, �0,2Þ

� �

¼
A1=2

2
a20,2 expð�2LÞ þ

a20,1
a

expð�2L=aÞ

 !
: ð31Þ

In sum, we obtain the following harmonic
approximation to the spreading coefficient S associ-
ated with our one-parameter family of non-wet states
for given a and b,

Sð2ÞðLÞ ¼ 2 �̂ð2Þ
½0,z��
� �ð2Þ��


 �
¼ A1=2

�
a20,2ðtanhZ�ðLÞ � 1Þ expð�2LÞ

þ
a20,1
a

�
coth

Z�ðLÞ

a
� 1

	
expð�2L=aÞ

	
: ð32Þ

This expression can be interpreted as a ‘constrained’
surface free energy excess of the non-wet state relative
to the wet state, the constraint being a fixed, or
imposed, value of the wetting layer thickness ‘. This
constrained surface free energy difference is the so-
called interface potential. Once more, we emphasize
that this harmonic approximation is only valid to
leading order(s) in expð�2LÞ and expð�2L=aÞ.
Correction terms, not calculated in our approach,
should be expected. Presumably these corrections are
of order expð�4LÞ and expð�4L=aÞ. Whether such
possible corrections are relevant must be assessed case
by case.

We may now attempt to obtain the harmonic
approximation to the equilibrium spreading coefficient
by minimizing this interface potential Vð‘ Þ � Sð2ÞðLÞ
with respect to ‘. Note that in view of (32) we have
Vð1Þ ¼ 0. The equilibrium wetting layer thickness ‘̂
follows from

dVð‘ Þ

d‘

����
‘̂

¼ 0: ð33Þ

To proceed analytically is in general a nontrivial task
since, as we have made explicit in (32), the crossing
distance Z� depends on L. Note that, for a4 1, the
second term in (32) is the leading one and its prefactor
is positive. Therefore, for a4 1 this approximation
predicts the existence of a barrier in the interface
potential and a (local) minimum at L¼1. This implies
a first-order wetting transition, consistently with our
numerical computations for a4 1. On the other hand,
for a5 1, the first term leads in (32) and it is negative,
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while the second term is positive. In this case the
interface potential allows us to describe critical wetting
in the limit ja0,2j ! 0, as we will now show in more
detail.

3.2. Non-universal wetting, with continuously varying
order: the case a¼1/2

It is instructive to explore first the special case a¼1/2,
for which (29) greatly simplifies to

expð�LÞ ¼
ja0,2j

a0,1
sinhZ�, ð34Þ

to leading order in expð�LÞ � 1. Using this, we can
eliminate Z� in favour of L, a0,1 and a0,2 in the
interface potential. Subsequently, we calculate the
leading terms, for large ‘, in the expansion of V(‘) in
powers of expð�LÞ. This leads to the result

Vð‘ Þ=A1=2 ¼ �a20,2 expð�2LÞ � 2a0,1a0,2 expð�3LÞ

þ Oðexpð�4LÞÞ, ð35Þ

and we recall a0,2 5 0. We do not know the amplitude
of the correction term, of order expð�4LÞ, because it
may contain a contribution from an ‘anharmonic’
correction to (32). Nevertheless, using only the two
leading terms it is possible to derive an approximate
equilibrium wetting layer thickness using (33). We find

expð�L̂Þ ¼
ja0,2j

3a0,1
: ð36Þ

Note that, within this approximation, z�ð‘̂ Þ is finite
since sinhZ�ðL̂Þ ¼ 1=3 for a¼1/2, independently of b.
The precise value of this constant (1/3) is unimportant,
as it does not affect the form of the critical singularities
at wetting. Important is that our approximation is self-
consistent because for finite z� the intersection point of
the trajectories lies close to the � phase point where our
harmonic approximation is justified. Making the
observation that ja0,2j ¼ OðbÞ, in view of the second
of Equations (26), we obtain a logarithmic divergence
of the wetting layer thickness

‘̂ / lnð1=bÞ ð37Þ

implying a critical wetting transition in the limit b! 0.
Besides the exponent �s ¼ 0(log) we can also obtain the
critical exponent of the surface free energy singularity,
after inserting the equilibrium expression (36) into
(either of) the two terms in (35). We obtain

�S / b4: ð38Þ

In order to obtain �s explicitly we now generalize our
calculations to a 6¼ 1/2.

3.3. Non-universal wetting, with continuously varying
order: the more general case a5 1

For a 6¼ 1/2 we assume that z�ð‘̂ Þ is also a finite

constant, as our inspection of the case a¼1/2 sug-

gested. The outcome of the calculations, in as far as the

critical exponents at wetting are concerned, are quite

robust to changing the value of this constant and to the

approximations made to derive it. In the following we

will accordingly simplify the algebra considerably by

assuming that z� and even z�=a are smaller than unity

in such a way that the hyperbolic functions can be

safely approximated by their expansions to first order

in these variables. We will check the self-consistency of

these Ansätze after we get the results.
We approximate (29) by

a0,1
ja0,2j

exp �L
1

a
�1

� 	� 

¼ a

sinhðZ�=aÞ

coshZ�

 tanhZ� 
Z�:

ð39Þ

This soon leads to the following asymptotic form for

the interface potential

Vð‘Þ=A1=2
�a20,2 expð�2LÞ�2a0,1a0,2 exp½�Lð1þ1=aÞ�

� ða20,1=aÞexpð�2L=aÞþOðexpð�4LÞÞ, ð40Þ

where we have no calculational evidence for a possible

correction of order expð�4LÞ but prudently allow for it

on general grounds (cf. our remarks following (35)).

Note that this possible correction can, depending on

the value of a, move forward in our expansion and

even become the next-to-leading term. In any case, for

1=35 a5 1 the first two terms in (40) suffice to obtain

a clear prediction for the equilibrium wetting layer

thickness ‘̂ and the spreading coefficient singularity.

The generalization of (36) reads

exp �L̂
1

a
� 1

� 	� 




ja0,2j

ð1þ 1=aÞa0,1
/ b: ð41Þ

We can now verify that z�ð‘̂ Þ and z�ð‘̂ Þ=a are indeed

bounded below 1. Note that (41) and (39) imply

a0,1
ja0,2j

exp �L̂
1

a
� 1

� 	� 




a

aþ 1
¼ Z�ðL̂Þ, ð42Þ

in our (linear) approximation for small Z�. On the

other hand, if at this stage we revert back to the

hyperbolic functions, we obtain values of Z� that

satisfy

sinhðZ�ðL̂Þ=aÞ

coshZ�ðL̂Þ
¼

1

aþ 1
, ð43Þ
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which is solved rather well by our approximation (39),

i.e. Z�ðL̂Þ=a 
 1=ðaþ 1Þ5 1. In particular, for a! 0,

Z�ðL̂Þ=a 
 0:8814 solves (43).
Next, we discuss the surface free energy singularity

at wetting. Eliminating L in any of the terms in (40)

with the use of (41) we find that (38) generalizes to

�S / b2=ð1�aÞ: ð44Þ

if we now inspect the results and notational conven-

tions featured in our survey (see Section 2.4, final

paragraph) we arrive at the conclusion that

2� �s ¼
1

1� a
ð45Þ

is consistent with the interpretation that in our model

not b but b2 is the natural variable to measure the

distance to the wetting transition when this transition

takes place for b! 0. Remarkably, for a5 1/2 the

wetting transition in our model does not ‘lock in’ to a

standard second-order transition with �s ¼ 0, as in the

other models discussed in Section 2.4. Instead, the

order of the transition decreases continuously from

2 to 3/2, when a is lowered from 1/2 towards 1/3.

This is due to the particular form of the exponents of

the leading and subleading terms in our interface

potential (40), which is somewhat different from that in

the other models.
High-precision numerical computations for our

model corroborate the conclusions (values of �s
and �s) reached on the basis of the analytic interface

potential approach and the accompanying approxima-
tions we used. What happens, then, for a5 1/3? The
analytical arguments we presented leave open three
possibilities. First, if the amplitude, which we denote
by B, of the correction term of order expð�4LÞ to (40)
is positive, the order of the transition takes a universal
value for a� 1/3. Secondly, if B¼ 0 the transition
remains non-universal also below a¼1/3, until a higher-
order correction becomes relevant. Thirdly, if B5 0 it
is less obvious what to expect, but a (non-universal)
critical wetting transition in the limit b ! 0 is still
possible provided B! 0. Our numerical computations
are consistent with the second (or third) scenario. The
non-universal critical wetting transition appears to
persist, at least down to a¼1/5, at which point we
obtain �S / b5=2, in agreement with (44).

Figures 6 and 7 illustrate the results of our
numerical computations for selected values of a,
for the original model defined through (3) and (4).
Figure 6 shows the behaviour of the spreading coef-
ficient when the critical wetting transition at bw ¼ 0 is
approached for a¼ 0.2, a¼ 0.5 and a¼ 0.9. The results
are in quantitative agreement with the analytic predic-
tion (44) that the order of the transition is, respectively,
2� �s¼ 1.25, 2 and 10. Figure 7 shows the behaviour
of the wetting layer thickness approaching the critical
wetting transition at bw ¼ 0, for a¼ 0.5, and approach-
ing the second-order critical wetting transition at
bw ¼ bwð1Þ ¼ 0:618 . . . for a¼ 1. In both cases the
divergence of ‘ is logarithmic, in accord with the
analytical arguments which we presented for a5 1 and
with general expectations for a¼ 1 (see our discussion
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a=0.2

Figure 6. Equilibrium spreading coefficient S versus wetting
parameter b, in log–log representation, for selected values of
the asymmetry parameter a. The slopes, which correspond to
twice the order of the wetting transition, according to (44)
and (45), are 2.5� 0.1 for a¼ 0.2, 4� 0.2 for a¼ 0.5 and
20� 1 for a¼ 0.9. The wetting transition takes place in the
limit b! 0.
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Figure 7. Equilibrium wetting layer thickness ‘ versus
wetting parameter b, in semi-log representation, for selected
values of the asymmetry parameter a. For a¼ 0.5 the critical
wetting transition takes place in the limit b! 0, while for
a¼ 1 it takes place at b ¼ bwð1Þ 
 0.681. In both cases the
divergence of ‘ is logarithmic.
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in Section 2.2, in particular result (9)). Incidentally,
these computations for the wetting layer thickness, for
a¼ 1, complement the earlier paper which uncovered
the second-order wetting transition point in this model
and in which the behaviour of the spreading coefficient
was discussed [16]).

3.4. Infinite-order wetting in the limit a " 1

The observation that the wetting phase boundary in
the global wetting phase diagram (Figure 4) features a
vertical segment at a¼ 1 has prompted us to study
what happens as this segment is approached from the
left. Numerical computation reveals that the wetting
transition approached in this manner is of very high,
possibly infinite, order. Concomitantly, the wetting
layer thickness diverges as the first inverse power of the
distance to the phase boundary, a much more dramatic
increase than the ubiquitous logarithmic growth found
under almost all other circumstances in our and other
models with short-range forces.

Analytical support for the occurrence of a genuine
infinite-order wetting transition is gathered by examin-
ing the interface potential (40) under a different angle.
Instead of varying a0,2, or, equivalently, b, towards
zero, we keep this parameter constant and vary a
towards 1. Recalling (40) and the result for the
equilibrium wetting layer thickness (41), which we
rewrite as follows

‘̂
ffiffiffiffi
A
p
� L̂ 


a

1� a
ln
ð1þ 1=aÞa0,1
ja0,2j

� 	
, ð46Þ

the algebraic divergence of ‘ for a " 1 is conspicuous.
Likewise, embedding this result in (40) leads to

�S / ðb=bwð1ÞÞ
2a=ð1�aÞ

/ exp½�C=ð1� aÞ�, ð47Þ

with C4 0, which is possible provided b5 bwð1Þ ¼
0:681. . ., where bwð1Þ corresponds to the upper end of
the infinite-order transition line in the (a, b)-plane at
a¼ 1. The infinite-order character of the transition
(exponential singularity) is thus clearly supported by
analytical arguments.

In closing this section we draw attention to the fact
that the variational approach which underlies our
analytical results was presented in a different way in
our Letter [2]. There, no derivation was presented of
the interface potential. In fact, the behaviour of the
wetting layer thickness was not discussed. The con-
straint was formulated in terms of the order parameter
�1 rather than in terms of the distance z. That
approach is equivalent to the one we have employed
in this paper.

4. A simple(r) model with an infinite-order wetting

transition

Instead of the sixth-order free energy density function

(4) we now consider the fourth-order form

Fð�1, �2; c, bÞ ¼ c�21�
2
2 þ ð�2 � bþ b�21Þ

2: ð48Þ

The bulk phases correspond, as before, to the points

(�1,0), (1, 0) and (0,b) in the (�1,�2)-plane. When this

free energy density is expanded about the wetting

phase, at ð�1, �2Þ ¼ ð0, bÞ, we obtain the ‘potential

energy’

Vð�1, �2; c, bÞ � �Fð�1, �2; c, bÞ 
 �c b
2�21 � ð�2 � bÞ2,

ð49Þ

so that we can define the asymmetry parameter a

through

1

a
¼ b c1=2: ð50Þ

Chronologically, before we began to explore the

properties of the two-parameter model defined

through (4), we investigated numerically the model

(48) for a fixed value of c, e.g. c¼ 16. We did this while

searching for models with a critical wetting transition

and with an F-polynomial of order lower than six,

knowing that for a sixth-order F a critical wetting

transition was already established [16]. Surprisingly,

numerical analysis of this quartic-polynomial model

with one parameter, b, suggested a wetting transition

of ‘very high and possibly infinite’ order at bw 
 1=4.
Assuming that the character of the singularity of the

surface free energy at wetting is governed by the

properties of the model in the vicinity of the � phase

point in the ð�1, �2Þ-plane, it suffices to insert c¼ 16 in

(50) in order to understand that this model ‘lies on’

a hyperbola in the (a, b) wetting phase diagram

(Figure 4), which crosses the wetting phase boundary

in the segment of infinite-order transitions located at

a¼ 1, in the point ð1, bwÞ with bw ¼ 1=4. More gener-

ally, this argument predicts an infinite-order transition

for the two-parameter model (48) provided c is chosen

large enough so that bw ¼ 1=c1=2 5 bwð1Þ, where bwð1Þ

is a model-dependent threshold.
The prediction of an infinite-order transition is in

accord with the numerical computations for this

model, illustrated in Figures 8 and 9. Figure 8 shows

the behaviour of the spreading coefficient when the

critical wetting transition at bw ¼ 1=4 is approached

for c¼ 16. The results are in quantitative agreement

with the analytic prediction of an exponential

singularity (47), implying that the order of the transi-

tion is infinity. Figure 9 shows the behaviour of the
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wetting layer thickness approaching the infinite-order
wetting transition. The divergence of ‘ appears to be
algebraic, in agreement with the analytical prediction
(46), which can be written in the form

‘̂ /
a

1� a
/

bw
b� bw

, ð51Þ

in view of (50). However, the slope of the line formed
by the data in Figure 9 has apparently not yet
converged. With our present accuracy we cannot yet
conclusively confirm the value �1 predicted by (51).

5. Conclusions and outlook

We close this paper with a concise recapitulation and
some speculations. The phase diagram (Figure 4)
teaches us that fairly basic choices of density-functional
models for three-phase equilibria possess an astonish-
ingly rich variety of wetting phase transitions. The
infinite-order transitions, to which we draw special
attention, and which were almost not recognized until
very recently, appear to be fairly ubiquitous! Indeed,
while they seem to emerge for the first time, within
mean-field theory, in the two-parameter model studied
in our Letter [2], we conjecture that a segment of infinite-
order wetting also occurs in the global wetting phase
diagram of two previously studied multi-component
order parameter models [3,19]. From a theoretical point
of view, a segment of infinite-order transitions (Figure
4) appears to be a new alternative to known scenarios
for connecting first-order to critical wetting, such as the

familiar tricritical point [27] and the less familiar critical
endpoint scenario [20, 28].

Moreover, we suggest that the ferromagnet with
cubic anisotropy might well be the most obvious
experimental system in which to look for the infinite-
order transition. Since in general the (cubic) magnetic
anisotropy, and consequently the parameter a, is
temperature dependent [29], varying the temperature
implies following an oblique path in the global
temperature–anisotropy phase diagram (Figure 4).
Here we assume that b is a temperature-like or at
least temperature-dependent field, which is explicitly
realized in (13), where b / ð�tÞ1=2. Therefore, the
infinite-order wetting transition ought to be accessible
in this system, no less than the wetting transitions of
finite order and the experiment can, in principle, be
performed on a single sample by varying T. Further,
note that the path traced by varying the control
parameter in the simpler model studied in Section 4,
corresponds to an oblique path in the (a, b)-plane.

How do thermal fluctuations, not included in our
mean-field treatment, affect our results, knowing that
the upper critical dimension for wetting and short-
range forces is d¼ 3 [13, 24]? We follow the reasoning
advocated in [3] and acknowledge that, when the
wetting transition takes place sufficiently far from bulk
(multi-)criticality, the results are not significantly
altered. Otherwise, exponent renormalization is in
order, and the results presented in the second paper
in [18] can provide a guideline, to a large extent also for

1

2

3

 1  2  3

ln
 l

–ln (b–bw)

Figure 9. Equilibrium wetting layer thickness ‘ versus
wetting parameter b, in log–log representation, for the
model defined in (48), with c¼ 16 and assuming bw equals
the analytically predicted value 1/4. Although the data
appear to settle along a straight line, the slope still tends to
increase slightly as the wetting transition is approached. With
our present accuracy we conclude �s ¼ �0:85� 0:2, with a
downward trend. This is not inconsistent with the predicted
value �s ¼ �1.

–30

–20

–10

 0  5  10  15  20

ln
 (

–S
)

1/[1–(bw/b)]

Figure 8. Equilibrium spreading coefficient S versus wetting
parameter b, in semi-log representation, for the model
defined in (48), with c¼ 16 and assuming bw equals the
analytically predicted value 1/4. Clearly, the slope converges
rapidly to a finite value, supporting the conjectured expo-
nential singularity associated with a wetting transition of
infinite order at bw ¼ 1=4.
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our present model. In any case, this is an open problem
outside the scope of our paper.

In this paper we have gone beyond what was
presented in our Letter [2] in several respects. We have,
inter alia, derived new results for the behaviour of the
wetting layer thickness ‘ upon approach of an infinite-
order wetting transition, in particular regarding the
algebraic divergence (�s ¼ �1), and we have outlined
how analytic approximations can be obtained and used
to anticipate, or explain, the findings of accurate
numerical analysis of the full density-functional model.
It is peculiar to the infinite-order transition that
analytic arguments are indispensable to complement
‘exact’ numerical computations, because it is subtle to
distinguish a transition of very high but still finite
order from one of infinite order.
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Notes

1. We tacitly ignore the fact that in this system, at the
elevation of the vapour–liquid interface, the adsorbate is
slightly away from two-phase coexistence. If we were to
take this into account, we ought to describe the observed
phenomena in terms of a first-order prewetting transi-
tion. This does, however, not affect its discontinuous
character essential to our present discussion.

2. Incidentally, the special case a¼ 1, or 
¼ 3, does not
represent a ‘tricritical point’ as suggested in [19], but
rather a (simple) critical point, with, indeed, the univer-
sal exponent of second-order wetting [19]. This critical
point is, in our view, the terminus of a line of infinite-
order wetting transitions, located at 
¼ 3. These infinite-
order transitions can take place upon varying 
 towards
the value 3 from above (to be compared with the vertical
segment at a¼ 1 in Figure 4). At the same time, this
critical point can be the endpoint of a line of first-order
wetting transitions which extends towards a4 1, or

5 3 (cf. Figure 4).

3. The existence of this intersection can be demonstrated
analytically as follows. Without loss of generality, fix the
asymmetry parameter to a¼1/2. The approximate non-
wet trajectory is then given by �1ðZÞ ¼ 2a1 sinh 2Z and
�2ðZÞ ¼ b� 4a1 coshZ. At position Z ¼ ~Z given by
cosh ~Z ¼ b=ð4a1Þ it crosses the axis �2 ¼ 0, at

�1ð ~ZÞ ¼ ½1� ð4a1=bÞ
2
�
1=2 b2=ð4a1Þ. If we choose

a1 5 b2=ð4ð1þ b2Þ1=2Þ we obtain �1ð ~ZÞ4 1. This is a

sufficient condition for the existence of an intersection of

the approximate non-wet trajectory and the exact wet

trajectory in the ð�1, �2Þ-plane.
4. Strictly speaking, at z ¼ z�, the harmonic approxima-

tions to the non-wet and wet trajectories near � intersect.
In Figure 5 only the exact wet trajectory is shown, but
the distinction is negligible on the scale of the figure.

References

[1] For a recent review, see D. Bonn, J. Eggers, J.O.

Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys.

81, 739 (2009).
[2] K. Koga, J.O. Indekeu and B. Widom, Phys. Rev. Lett.

104, 036101 (2010).
[3] E.H. Hauge, Phys. Rev. B 33, 3322 (1986).
[4] J.S. Rowlinson and B. Widom, Molecular Theory of

Capillarity (Dover, New York, 2002).
[5] R. Evans, Adv. Phys. 28, 143 (1979); R. Evans, in

Fundamentals of Inhomogeneous Fluids, edited by D.

Henderson (Dekker, New York, 1992), Ch. 3, pp. 85–

175;

R. Evans, in Liquids at Interfaces, Proceedings of the

Les Houches Summer School of Theoretical Physics,

Les Houches, 1988, edited by J. Charvolin, J.F. Joanny

and J. Zinn-Justin (North Holland, Amsterdam, 1990).

[6] R. Roth, R. Evans, A. Lang and G. Kahl, J. Phys.

Condens. Matter 14, 12063 (2002).

[7] P. Hopkins, A. J. Archer, and R. Evans, J. Chem. Phys.

129, 214709 (2008); P. Tarazona and R. Evans, Mol.

Phys. 48, 799 (1983).
[8] M.R. Moldover and J.W. Cahn, Science 207, 1073

(1980).
[9] D. Bonn, H. Kellay and G. Wegdam, Phys. Rev. Lett.

69, 1975 (1992).
[10] I. Szleifer and B. Widom, Mol. Phys. 75, 925 (1992).

[11] K. Koga and B. Widom, J. Chem. Phys. 127, 064704

(2007).

[12] D.B. Abraham, Phys. Rev. Lett. 44, 1165 (1980).
[13] For a review, see M.E. Fisher, J. Chem. Soc. Faraday

Trans. II 82, 1569 (1986).
[14] D. Ross, D. Bonn and J. Meunier, Nature 400, 737

(1999).
[15] N.R. Bernardino, A.O. Parry, C. Rascon and

J.M. Romero-Enrique, J. Phys. Condens. Matter 21,

465105, and references therein (2009).

[16] K. Koga and B. Widom, J. Chem. Phys. 128, 114716

(2008).

[17] K. Ragil, J. Meunier, D. Broseta, J. Indekeu and

D. Bonn, Phys. Rev. Lett. 77, 1532 (1996).

[18] T. Aukrust and E.H. Hauge, Phys. Rev. Lett. 54, 1814

(1985), E.H. Hauge and K. Olaussen, Phys. Rev. B 32,

4766 (1985).
[19] C.J. Walden, B.L. Györffy and A.O. Parry, Phys. Rev.

B 42, 798 (1990).

1310 K. Koga et al.



[20] J.O. Indekeu and J.M.J van Leeuwen, Phys. Rev. Lett.

75, 1618 (1995); Physica C 251, 290 (1995).
[21] V.F. Kozhevnikov, M.J. Van Bael, P.K. Sahoo,

K. Temst, C. Van Haesendonck, A. Vantomme and

J.O. Indekeu, New J. Phys. 9, 75 (2007).

[22] J.M.J van Leeuwen and E.H. Hauge, J. Stat. Phys. 87,

1335 (1997).

[23] W. Speth, PhD thesis (München 1986). A summary of

Speth’s contribution is given in [24].

[24] S. Dietrich, in Phase transitions and Critical Phenomena,

edited by C. Domb and J.L Lebowitz (Academic,

London, 1988), Vol. 12, p. 1.
[25] F. Clarysse and J.O. Indekeu, Physica A 521, 70 (1998).

[26] R. Lipowsky and Th.M. Nieuwenhuizen, J. Phys. A 21,
L89 (1988).

[27] H. Nakanishi and M.E. Fisher, Phys. Rev. Lett. 49,
1565 (1982).

[28] S. Rafaı̈, D. Bonn, E. Bertrand, J. Meunier, V.C. Weiss
and J.O. Indekeu, Phys. Rev. Lett. 92, 245701 (2004).

[29] P. Asselin, R.L.F. Evans, J. Barker, R.W. Chantrell, R.
Yanes, O. Chubykalo-Fesenko, D. Hinzke, and U.
Nowak, Phys. Rev. B 82, 054415 (2010); for other

possibilities (than changing the temperature) of manip-
ulating magnetic anisotropy experimentally, see the
review M.T. Johnson, P.J.H. Bloemen, F.J.A. den

Broeder and J.J. de Vries, Rep. Prog. Phys. 59, 1409
(1996).

Molecular Physics 1311




