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Thermodynamic functions as correlation-function integrals
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Expressions of some thermodynamic functions as correlation-function integrals, such as the
Ornstein-Zernike integral, the Kirkwood-Buff integrals, and the integral formulas for virial coeffi-
cients, are recalled. It is noted, as has been remarked before, that the choice of molecular centers
from which intermolecular distances are measured is arbitrary and that different choices lead to dif-
ferent forms of the correlation functions but that the integrals must be independent of those choices.
This is illustrated with the second virial coefficients of hard spheres in one, two, and three dimen-
sions, with that of gaseous propane in three dimensions, and with computer simulations of the pair
correlations in water and in a dilute aqueous solution of propane. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4795498]

I. INTRODUCTION

Thermodynamic functions or other properties of macro-
scopic systems may often be calculated as integrals of corre-
lation functions. An example is the Ornstein-Zernike formula
for a one-component fluid,

kT χ − 1
ρ1

=
∫

h11(r)dτ, (1)

where χ is the fluid’s compressibility, ρ1 its number density,
and h11(r) its pair correlation function as a function of the dis-
tance r between molecule centers, with k the Boltzmann con-
stant and T the temperature. Here dτ is the element of volume
in the integration, which is over the whole space.

The Kirkwood-Buff integrals1–4 are generalizations of
(1) to systems of two or more components. With two com-
ponents in which component 2, the solute, is infinitely dilute
in component 1, the solvent, these are, in addition to (1),

kT χ − v2 =
∫

h12(r)dτ, (2)

B = −1
2

∫
h22(r)dτ. (3)

In (2), χ is still the compressibility of the pure solvent while
h12(r)[=h21(r)] is the solute-solvent pair correlation function
at infinite dilution and v2 is the infinitely dilute limit of the
partial molecular volume of the solute in the solvent. This is
expressible in terms of χ , the pressure p, and the number den-
sities ρ1 and ρ2 of the solvent and solute, by

v2 = χ

(
∂p

∂ρ2

)◦

ρ1,T

, (4)

the superscript ◦ denoting the ρ2 = 0 limit. Equation (2) is also
closely related to a recently discussed formula for the excess
buoyant force (over that given by “Archimedes’ principle”)
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felt by large spheres, species 2, dilutely dispersed in a liquid
of small molecules, species 1, in a gravitational field.5, 6 In (3),
h22(r) is the solute-solute pair-correlation function at infinite
dilution and B is the osmotic second virial coefficient. For-
mula (3) occurred originally in the McMillan-Mayer solution
theory,7 where it is the analog of the formula for the gas-phase
second virial coefficient but with the intermolecular potential
in the latter now replaced by the infinitely dilute limit of the
solute-solute pair potential of mean force.

The integrands in (1)–(3) depend only on the distance
r between points (“centers”) arbitrarily assigned to be asso-
ciated with each molecule of the pair. They are called the
centers pair correlation functions by Gray and Gubbins;8

they may be obtained by averaging the full pair correlations
over the relative orientations and internal structures of the
molecules of the pair, with fixed distance r between their ar-
bitrarily defined centers.

The integrals on the right-hand sides of (1)–(3) are mea-
sures of the fluctuations in the densities of the molecular
species, hence in the densities of centers, as follows from the
definitions of the correlation functions hij(r), while the left-
hand sides measure those same fluctuations as follows from
the grand canonical partition function. The left-hand sides are
manifestly independent of any arbitrary choice of molecule
centers, and so also must be the integrals on the right-hand
sides, but their integrands hij(r) do depend, often markedly,
on those choices. That the molecule centers may be chosen
arbitrarily while the correlation function integrals remain in-
variant to those choices has long been recognized.9 That flexi-
bility can be exploited to create pair correlation functions that
simplify the subsequent integrations.10 The assigned centers
need not even lie within the molecules themselves or on any
atom centers, nor need they be chosen the same on the two
molecules of the pair.

Here we shall illustrate these principles in model sys-
tems, first in Sec. II with the second virial coefficient of hard
spheres in 1, 2, and 3 dimensions, then in Sec. III with the
second virial coefficient of gaseous propane, and in Sec. IV
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with computer simulations of water and of propane in aque-
ous solution.

II. HARD SPHERES IN 1, 2, AND 3 DIMENSIONS

For hard rods of length σ confined to a line, the second
virial coefficient is σ , as follows from the equation of state
p = ρkT/(1 − σρ).11 If the arbitrarily assigned “center” is
chosen to be the rod center itself, as is natural, then the pair
correlation function h(|x|) at infinite dilution, as a function of
the displacement x = x2 − x1 between the centers of the pair
located at x2 and x1 on the line, is −1 when |x| < σ and 0
when |x| > σ . Then the second virial coefficient B is related
to the integral of that h(|x|) at infinite dilution over the whole
line by

B = −1
2

∫ ∞

−∞
h(|x|)dx = −

∫ ∞

0
h(r)dr = σ, (5)

as required.
To illustrate the remarks made in Sec. I, we now, instead,

choose as the “center” of each rod a point distant b from its
geometrical center. Note that when b > σ /2 this point lies
outside the rod itself. As shown in Appendix A, if b < σ /2,
then

h(r) =






−1, r < σ − 2b

−3/4, σ − 2b < r < σ

−1/4, σ < r < σ + 2b

0, σ + 2b < r;

(6)

if σ /2 < b < σ , then

h(r) =






−1/2, r < 2b − σ

−3/4, 2b − σ < r < σ

−1/4, σ < r < 2b + σ

0, 2b + σ < r;

(7)

and if σ < b, then

h(r) =






−1/2, r < σ

0, σ < r < 2b − σ

−1/4, 2b − σ < r < 2b + σ

0, 2b + σ < r.

(8)

This h(r) is plotted against r/σ for b = 0, σ /4, 3σ /4, and 5σ /4
in Fig. 1. It may be verified from (6)–(8) (or from a glance
at Fig. 1) that (5) holds for all b, while h(r) itself obviously
depends on b. This is as we wished to see.

For hard circles of diameter σ with their centers chosen
to be at their geometrical centers, one has B = (π /2)σ 2. If
instead one chooses the center of each to lie at a distance b
from the geometrical center, then, as shown in Appendix B,

h(r) = − 1
π

∫ π

0

ψ(r, θ )
π

dθ, (9)

where

ψ(r, θ ) =






0, |a − b| > σ

arccos a2+b2−σ 2

2ab
, |a − b| < σ < a + b

π, a + b < σ

(10)

with

a =
√

b2 + r2 − 2br cos θ . (11)
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FIG. 1. The pair correlation function h(r) of hard rods in the infinitely-dilute-gas limit, with four different values of b.
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FIG. 2. The pair correlation function h(r) of hard circles in the infinitely-dilute-gas limit, with four different values of b.

In Fig. 2, this h(r) is plotted against r/σ for b = 0, σ /4, σ /2,
and σ . For the last of these, the assigned center lies outside the
circle. The numerically calculated integrals of h(r) are −2B
= −2π (0.4999)σ 2 for all b, as we wished to see.

For hard spheres of diameter σ , with the center chosen
to be at the geometrical center of each sphere, one has B
= (2π /3)σ 3. If instead one chooses the center of each to lie
at a distance b from the geometrical center, then, as shown in
Appendix C,

h(r) = 1
4

∫ 1

−1
[cos φ(r, ξ ) − 1]dξ, (12)

where

φ(r, ξ ) =






0, |a − b| > σ

arccos a2+b2−σ 2

2ab
, |a − b| < σ < a + b

π, a + b < σ

(13)

with

a =
√

b2 + r2 − 2brξ . (14)

In Fig. 3, this h(r) is plotted against r/σ for b = 0, σ /4, σ /2,
and σ . For the last of these, the assigned center lies outside
the sphere. The numerically calculated integrals of each of
the h(r) in Fig. 3 give −2B = −4πσ 3 (0.333 333), the same
for all b, as we wished to see.

III. GASEOUS PROPANE

The second virial coefficient B of a gas of nonspherical
molecules interacting with the pair potential +(r, ,1, ,2) is

given by

B = −1
2

∫
[〈e−+(r,,1,,2)/kT 〉,1,,2 − 1]dτ, (15)

where r is the distance between arbitrarily assigned centers
of two molecules and ,1, ,2 are the orientations of the
two. The bracket 〈· · ·〉,1,,2

means the unweighted, normal-
ized average over all orientations. Here again dτ is the ele-
ment of volume in the integration, which is over the whole
volume. Direct evaluation of the right-hand side of (15) for
given + requires a multidimensional integral over the orien-
tations and the distance, which must be done numerically,12

except for special forms of pair potentials +.13, 14 Alterna-
tively, with the aid of simulation one may first calculate the
radial distribution function g(r) between arbitrarily chosen
centers of molecules at low densities and then, noting that
g(r) ∼ 〈e−+(r,,1,,2)/kT 〉,1,,2 as ρ → 0, one obtains B from
the one-dimensional integral

B = −2π lim
ρ→0

∫ ∞

0
[g(r) − 1]r2dr. (16)

This is a special case of (3) with the “solvent” now vacuum.
To illustrate the calculation of B from g(r) of a dilute

gas of nonspherical molecules, we performed NV T ensem-
ble molecular dynamics simulations of gaseous propane. The
simulations here and in Sec. IV were done with GROMACS
(GROningen MAchine for Chemical Simulations).15 The sim-
ulation box is a cube of side 10 nm (V = 1000 nm3), contains
20, 40, or 80 molecules, and is subject to periodic boundary
conditions. The temperature is 300 K. The intermolecular in-
teraction potential is taken to be the OPLS model, which has
three Lennard-Jones (LJ) interaction sites representing two
CH3 groups and one CH2.16 The LJ potentials are tapered off
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FIG. 3. The pair correlation function h(r) of hard spheres in the infinitely-dilute-gas limit, with four different values of b.

by a switching function in the range 1.4 nm < r < 1.7 nm. The
time step is 1.0 fs. The net simulation length for production
runs is 160, 1000, and 2000 ns for the system of 80, 40, and
20 molecules, respectively. The radial distribution functions
are then obtained for three pairs of the interaction sites, CH3–
CH3, CH3–CH2, and CH2–CH2, which correspond to pairs
of different choices of molecule centers. The finite-size effect
on g(r) is not simply corrected by a factor 1 − 1/N.17, 18 In
the case of 20 molecules, g(r) ∼ 0.967 for r > 2.0 nm as com-
pared to 1 − 1/N = 0.95. Thus each numerically obtained g(r)
is multiplied by a constant that makes the average value over
the range 2.0 nm < r < 2.5 nm equal to the correct asymp-
tote 1. Integral (16) is then evaluated with the upper limit ∞
replaced by a finite distance Rc.

In Fig. 4 the g(r) is plotted for the three choices
of molecule centers of the model propane (N = 20, ρ

 0

 1

 2

 0  1  2

g(r)

r / nm

FIG. 4. The radial distribution function g(r) of gaseous propane at 300 K and
ρ = 0.02 nm−3 for three different pairs of the molecule “centers:” CH3–CH3
(first peak lowest, red), CH3–CH2 (middle, green), and CH2–CH2 (highest,
blue).

= 0.02 nm−3). All the curves have the characteristic forms
of g(r) for dilute gases but they are different from each other.
It is confirmed that the integrals

∫ Rc

0 [g(r) − 1]r2dr converge
for Rc > 1.7 nm. The values of the integral multiplied by −2π

with Rc = 2.4 nm are −0.623, −0.623, and −0.622 nm3 for
the CH3–CH3, CH3–CH2, and CH2–CH2 pairs, respectively.
They are nearly identical, as we wished to see. The invariance
of the integral was also confirmed for the other densities.

The g(r) at low densities may be expanded as

g(r) = 〈e−+(r,,1,,2)/kT 〉,1,,2 + ρg1(r) + ρ2g2(r) + · · · .

(17)

Then the low-density limit of the integral (16), which is B, is
obtained by linear extrapolation of the integral to ρ = 0. The
numerically calculated integral is indeed nearly linear in ρ

and the linear extrapolation gives B = −0.60 nm3. It is close
to −0.63 nm3, the experimental B at 300 K,19 although the
OPLS model of propane was originally developed to fit only
the liquid density and the heat of vaporization.

IV. WATER AND AN AQUEOUS SOLUTION
OF PROPANE

We performed NPT-ensemble molecular dynamics simu-
lations of liquid water at 298 K and 1 bar. The potential model
of water is the TIP4P/200520 with the LJ potential truncated at
0.9 nm; the long-range Coulomb interaction is treated by the
Ewald sum with the real-space cutoff of 0.9 nm. The number
of molecules is 2000 and the simulation length for the pro-
duction run is 2.0 ns.
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FIG. 5. The integral 4π
∫ Rc

0 h(r)r2dr , as a function of Rc in units of nm3,
of liquid water at 298 K and 1 bar for three different pairs of the molecule
“centers:” O–O (red), O–H (green), and H–H (blue).

The pair correlation function h(r) is obtained for
O–O, O–H, and H–H interaction-site pairs, which correspond
to three different choices of molecule centers. In Fig. 5,
4π

∫ Rc

0 h(r)r2dr is plotted for the three pairs as a function
of Rc. It is clearly seen that the three curves converge to a
common value, as expected. With Rc = 2.4 nm, the value
is −0.02833 ± 0.0001 nm3, which is the right-hand side of
the Ornstein-Zernike formula (1). The experimental value of
kT χ − v of liquid water at 298 K and 1 bar, the left-hand side
of (1), is −0.02814 nm3. The agreement is remarkable.

We also performed NPT-ensemble molecular dynamics
simulations of a dilute aqueous solution of propane at 298 K
and 1 bar. The water-water and propane-propane intermolec-
ular interaction potentials are the same as those for liquid wa-
ter and gaseous propane employed above. The propane-water
site-site potentials are the LJ potential with the parameters
given by the Lorentz-Berthelot mixing rule. The LJ potential
functions for the water-water, propane-water, and propane-
propane intermolecular interactions are tapered off at 1.7 nm.
The number of water molecules is 4000 and that of propane is
24. The simulation length for the production run is 580 ns.
The propane-water and propane-propane radial distribution
functions g(r) are then obtained. The finite-size effect on g(r)
is corrected in the same way as was done for g(r) of gaseous
propane.

In Fig. 6 are plotted the propane-water g(r) and the cor-
responding integral for four different pairs of the interaction
sites, CH3–O, CH3–H, CH2–O, and CH2–H. That the inte-
grals converge to a common value as shown in Fig. 6(b) illus-
trates that the left-hand side of (2) is independent of the choice
of molecule centers. An average value of the integrals with Rc

= 2.0 nm is −0.110 nm3, which is very close to −0.116 nm3,
an experimental value of kT χ − v2 with v2 = 0.117 nm3.21

In Fig. 7 shown are the propane-propane radial distribu-
tion function g(r) and the corresponding integral for three dif-
ferent pairs of the interaction sites, CH3–CH3, CH3–CH2, and
CH2–CH2. The result shown in Fig. 7(b) illustrates again that
the correlation function integral is invariant to the choice of
molecule centers. If one assumes the concentration of propane
in water is sufficiently low, then, from the McMillan-Mayer
formula (3), the integral multiplied by −1/2 would be a good
estimate of B, the osmotic second virial coefficient of propane
in water. With the average value of the integrals with Rc

= 2.0 nm, one finds B = −0.068 nm3 = −40.9 cm3mol−1.
The negative sign indicates an effective attraction between
propane molecules in water, but the absolute value is very
small as compared with the value −570 cm3mol−1 evaluated
from the van der Waals two-component equation of state22, 23

or the −668 cm3/mol24 as calculated with the UNIQUAC
equation of state.25 The calculated osmotic virial coefficient
B is even less negative than B for gaseous propane at the same
temperature.

While Fig. 7(b) illustrates the invariance of the
correlation-function integral to the choice of molecular cen-
ters, which was our main point, the numerical discrep-
ancy between the osmotic virial coefficient found in the
simulations and that obtained by thermodynamics from equa-
tions of state remains an unresolved puzzle. A possible expla-
nation is that the simulated solution, while very dilute, may
still have been too concentrated for the calculated propane-
propane g(r) to have been effectively at infinite dilution, as
required for (3) to hold. We note that the propane mole frac-
tion in the model system was 0.006, about two hundred times
the experimental equilibrium solubility, 0.27 × 10−4, at 298 K
and 1 bar.26 That means the simulated solution may have been
in a metastable rather than stable thermodynamic state. That
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FIG. 6. (a) The propane-water g(r) and (b) the corresponding integral 4π
∫ Rc

0 h(r)r2dr , as a function of Rc in units of nm3, for a dilute aqueous solution of
propane at 298 K and 1 bar. Four curves in each plot are those evaluated for pairs of the molecule “centers:” CH3–O (red), CH3–H (green), CH2–O (blue), and
CH2–H (pink).
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FIG. 7. (a) The propane-propane g(r) and (b) the corresponding integral 4π
∫ Rc

0 h(r)r2dr , as a function of Rc in units of nm3, for a dilute aqueous solution of
propane at 298 K and 1 bar. Three curves in each plot are those evaluated for pairs of the molecule “centers:” CH3–CH3 (red), CH3–CH2 (green), and CH2–CH2
(blue).

in itself would not have invalidated the calculated B,23 but
it was observed in the thermodynamic calculation that the
derived B becomes rapidly unreliable for mole fractions of
propane greater than about 3 × 10−4, because higher order
terms in the virial expansion may then begin to be important,
or because of an incipient instability of the solution, or both.23

This criterion for reliability of the calculation from an equa-
tion of state need not be the same as for the calculation as
a correlation-function integral, but it may be. There remains
also the uncertainty about the adequacy of the TIP4P model
for water and OPLS for propane in this application, although
we saw that in other respects they have performed well. Fi-
nally, the equations of state used in the thermodynamic calcu-
lations may have been inadequate for B, although the param-
eters in them were fit to reproduce other of the experimen-
tal properties of water and of aqueous solutions of propane.
Clearly, more needs to be done to resolve this discrepancy.

V. SUMMARY

Some thermodynamic functions may be identified with
integrals of pair correlation functions. Examples are the
Ornstein-Zernike relation (1), the Kirkwood-Buff relation (2)
for a solute 2 at infinite dilution in a solvent 1, and the
McMillan-Mayer relation (3) for the second osmotic virial co-
efficient B of a dilute solute 2 in solution. The same (3) with
h22(r) in the absence of solvent is also the formula for the sec-
ond virial coefficient of species 2 in the gas phase. The pair
correlation functions hij(r) are functions only of the distance
r between arbitrarily assigned “centers” of the two molecules
of the pair. These functions depend, in general, on that assign-
ment but their integrals, which are thermodynamic functions,
do not. This fact is illustrated in several model systems: for
the integral of the pair correlation function of hard spheres
in 1, 2, and 3 dimensions (Sec. II), for the integral of the
pair correlation function of gaseous propane as determined
by NV T molecular dynamics simulations (Sec. III), and for
the integrals of the water-water, propane-water, and propane-
propane pair correlation functions in dilute aqueous solutions
of propane as determined by NPT molecular dynamics simu-
lations (Sec. IV). The integral of the gaseous propane-propane

pair correlation function determined in the simulations yields
a second virial coefficient in good agreement with experi-
ment. The integral of the simulated pair correlation function
in liquid water yields kT χ − v also in good agreement with
experiment, as does the integral of the propane-water pair cor-
relation function. The integral of the propane-propane pair
correlation function as determined in the simulations of the
model dilute aqueous solution of propane, while invariant to
the choice of molecular centers, yields a propane-propane sec-
ond osmotic virial coefficient different from that found in ear-
lier calculations from equations of state. Possible reasons for
the discrepancy are discussed but it remains unresolved.
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APPENDIX A: HARD RODS WITH ARBITRARILY
CHOSEN CENTERS

Here we derive (6)–(8) for the correlation functions h(r)
of hard rods with arbitrarily chosen “centers” in the low-
density limit. Consider two hard rods of length σ confined to
a line as shown in Fig. 8. Their “centers” A and B are distant
b(> 0) from their geometrical centers C1 and C2, respectively.
Let x be the position of B measured from A and let θ1 and θ2

be the angles of −−→AC1 and −−→BC2, respectively, which represent
the orientations of the two rods. In the case of Fig. 8, θ1 = 0
and θ2 = π . The orientation-dependent pair correlation func-
tion at infinite dilution is

h(x, θ1, θ2) = e−+(x,θ1,θ2)/kT − 1, (A1)

where +(x, θ1, θ2) is the pair potential between hard rods: +

= 0 if the two rods do not overlap and + = ∞ if they do.
There are four possible sets of orientations: (θ1, θ2) = (0, 0),
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A BC1 C2

0 x

FIG. 8. Two hard rods with the geometrical centers C1 and C2 and the arbitrarily chosen “centers” A and B.

(π , π ), (0, π ), and (π , 0). For (0, 0) and (π , π ),

h(x, θ1, θ2) =
{

−1, −σ < x < σ

0, otherwise;
(A2)

for (0, π ),

h(x, θ1, θ2) =
{

−1, −σ + 2b < x < σ + 2b

0, otherwise;
(A3)

and for (π , 0),

h(x, θ1, θ2) =
{

−1, −σ − 2b < x < σ − 2b

0, otherwise.
(A4)

Note that in each case the range of x where h(x, θ1, θ2)
= −1 is 2σ , as it should be. The pair correlation function
h(x) is the unweighted average of h(x, θ1, θ2) over the four
possible sets of orientations; the resulting h(x) depends on b
but by symmetry it is always even in x, i.e., h(r) with r = |x|.
For 0 < b < σ /2, σ /2 < b < σ , and σ < b, one finds the
three classes of h(r) given by Eqs. (6)–(8) and illustrated in
Figs. 1(b)–1(d).

APPENDIX B: HARD CIRCLES WITH ARBITRARILY
CHOSEN CENTERS

In this appendix we show that in the low-density limit
the pair correlation function h(r) of hard circles of diameter
σ with arbitrarily chosen “centers” distant b from their ge-
ometrical centers is given by (9)–(11). Figure 9 shows two
hard circles 1 and 2 with geometrical centers C1 and C2 and
chosen centers A and B, respectively. Let θ = ) BAC1 and ψ ′

= ) C1BC2. (In the figure the latter angle is denoted by ψ ,
which is a special angle formed by the two hard circles touch-
ing.) Then, with A and B fixed and a distance r apart in the

C1

A B

C2

b

r

a b

FIG. 9. Two contacting hard circles with the geometrical centers C1 and C2
and the arbitrarily chosen “centers” A and B. The dashed circle is the ex-
cluded circle. The small circle with center B and radius b is the one on which
C2 moves when the orientation of circle 2 varies while the chosen “center” B
is fixed.

plane, h(r) is an unweighted average of

h(r, θ,ψ ′) = e−+(r,θ,ψ ′)/kT − 1 (B1)

over θ and ψ ′, which is obtained as follows. First we calculate

h(r, θ ) = 〈h(r, θ,ψ ′)〉ψ ′ ,

an unweighted average of (B.1) over ψ ′, the orientation of
circle 2. When ψ ′ varies while the points A, B, and C1 are
fixed, and so r and θ are fixed, the point C2 moves on a circle
with center B and radius b (call it circle B). If C2 is inside
the circle with center C1 and radius σ (the dashed circle as
shown in Fig. 9), the two hard circles overlap and so h(r, θ ,
ψ ′) = −1; otherwise h(r, θ , ψ ′) = 0. Therefore, h(r, θ ) is the
negative of the fraction of the circumference of circle B that
lies inside the dashed circle: denoting that fraction by ψ(r,
θ )/π ,

h(r, θ ) = −ψ(r, θ )
π

. (B2)

The h(r) is then an unweighted average of h(r, θ ) over θ , i.e.,

h(r) = − 1
π

∫ π

0

ψ(r, θ )
π

dθ, (B3)

which is (9). Let a = BC1, which is given by (11). Then,
if a + b < σ , circle B is entirely inside the dashed circle
and so ψ /π = 1; if |a − b| > σ , circle B is entirely outside
the dashed circle and so ψ /π = 0; and if a + b > σ and
|a − b| < σ , circle B is partially inside the dashed circle and
so 0 < ψ /π < 1. In the last case ψ is identical to the angle ψ

as shown in Fig. 9 that satisfies

σ 2 = a2 + b2 − 2ab cos ψ. (B4)

This is the second equality of (10). We note that the ψ of (10)
as a function of a and b is continuous at |a − b| = σ and a
+ b = σ in the a, b plane, except when a = σ and b = 0 or
when a = 0 and b = σ .

APPENDIX C: HARD SPHERES WITH ARBITRARILY
CHOSEN CENTERS

Here we show that in the low-density limit the pair cor-
relation function h(r) of hard spheres with arbitrarily chosen
centers is given by (12)–(14). Consider two hard spheres 1
and 2 with the geometrical centers C1 and C2 and the chosen
“centers” A and B, respectively, with the following distances:
r = AB and b = AC1=BC2. The orientation-dependent cor-
relation function is

h(r,,1,,2) = e−+(r,,1,,2)/kT − 1, (C1)

where ,1 and ,2 denote orientations of spheres 1 and 2 and
+ is the hard sphere potential. First we fix A, B, and C1 in
space. Figure 10 shows the plane on which A, B, and C1 are
fixed and the cross section of sphere 1 (thick circle). When
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C1

A B

C2
b

r

a b

FIG. 10. A hard sphere (thick line) with diameter σ and “center” A chosen
to be distance b from the geometrical center C1, the excluded sphere (dashed
line) with radius σ , and sphere B (thin line) with center B and radius b. Shown
here are the plane C1AB and the cross sections of the spheres.

the orientation of sphere 2 varies with B fixed, the geomet-
rical center C2 moves on a sphere with center B and radius
b (we call it sphere B). If C2 is inside a sphere with cen-
ter C1 and radius σ (we call it the excluded sphere), then
h(r, ,1, ,2) = −1; otherwise h(r, ,1, ,2) = 0. Therefore,
h(r, ,1) is the negative of the fraction of the surface of sphere
B that lies inside the excluded sphere: denoting that fraction
by (1 − cos φ)/2,

h(r,,1) = cos φ − 1
2

. (C2)

Let a = BC1 =
√

b2 + r2 − 2brξ with ξ the cosine of
) BAC1. If |a − b| > σ , sphere B is entirely outside the ex-
cluded sphere so φ = 0; if a + b < σ , sphere B is entirely
inside the excluded sphere and so φ = π ; and if |a − b| < σ

and a + b > σ , then the surface of sphere B is partially inside
the excluded sphere and that fraction is (1 − cos φ)/2 with φ

defined as ) C1BC2 in the geometry that C2 lies on the inter-
section of sphere B and the excluded sphere, as illustrated in
Fig. 10: that φ is given by

φ = arccos
a2 + b2 − σ 2

2ab
. (C3)

The unweighted average of h(r, ,1) over ,1 is

h(r) = 1
4π

∫
cos φ − 1

2
d,1 = 1

4

∫ 1

−1
[cos φ(r, ξ ) − 1]dξ,

(C4)
which is Eq. (12).
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