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ABSTRACT: A correlation-function-based scheme is proposed for
calculating the osmotic second virial coefficient B for solutes that dissolve
very little in a solvent. The short-distance contribution to B, a volume
integral of the solute−solute pair correlation function h(r) from 0 to some
finite distance rc, is evaluated with h(r) obtained by molecular simulation.
The remaining contribution to B from rc to ∞ is calculated with an
asymptotic form of h(r) (Evans, R.; et al. J. Chem. Phys. 1994, 100, 591). It
is shown here that B for a model system of methane in water is obtained
accurately in the temperature range between 238 and 373 K at 1 bar, with a
result that B is a monotonically decreasing function of temperature, and the
hydrophobic interaction between methane molecules measured by B is
repulsive (B > 0) in supercooled water, virtually null (B ≃ 0) at around 0
°C, and attractive (B < 0) at higher temperatures. It is also remarked that a
nearly linear relation holds between B and the first-peak height of the solute−solute radial distribution function.

I. INTRODUCTION

The term “hydrophobic effect” often indicates that nonpolar
molecules dissolve very little in water and once in the very
dilute solution they attract each other strongly. It is, however,
very difficult to verify the latter by experiment, precisely
because they are so dilute in water that their spatial correlation
cannot be measured. There are pioneering and recent
theo r e t i c a l d eve l opmen t s on the hyd rophob i c
interactions.1−14 It has been pointed out that the low solubility
of a hydrophobic solute in water does not necessarily imply
existence of strong attractive pairwise interactions.2,3,7 The
osmotic second virial coefficient B is an important measure of
the strength of the effective pair interaction between solute
molecules in the limit of infinite dilution: it is related to the
potential w(r) of mean force:18,19
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where k is Boltzmann’s constant, T is the temperature, and the
integral is over all space with the volume element dτ. The
potential w(r) is related to the solute−solute pair correlation
function h(r) by w(r) = −kT ln[h(r) + 1], and so
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which is one of the Kirkwood−Buff integrals at infinite dilution.
Both w(r) and h(r) depend on the choice of molecular
“centers” from which the distance r is measured; the integrals
(eqs 1 and 2) are invariant to the choice.20 Expression 1 for B is
a generalization of that for the second virial coefficient Bgas of
gases, because in vacuum w(r) is just the pair potential ϕ(r) and
eq 1 is then the standard formula for Bgas. Comparison of the
osmotic B for a solute with the gas-phase Bgas would then give a

quantitative answer to the question whether the solute
molecules attract more strongly in the solution than in vacuum.
There are a number of measurements of B for aqueous

solutions of proteinslarge, complex moleculeseither by the
osmotic pressure or light scattering; but the corresponding
direct measurements of B for small hydrophobic solutes are
much more difficult, if not impossible. Previous studies have
evaluated B for small alkanes or inert gases, either from the pair
correlation function obtained by computer simulation,2,4,7,20

from thermodynamic relations with input of solubility measure-
ments,2,3,8,15 or from analytic equations of state.16,17 However,
the estimates of B for methane at room temperature, for
example, differ among different methods to the extent that one
cannot determine its sign,2,7,15 and the temperature depend-
ence of B has not been determined for many solutes. A main
purpose of this paper is to calculate the osmotic second virial
coefficient for methane in water as accurately as possible. To
that end, we propose a correlation-function-based scheme for
calculating B, which evaluates both the short-range and long-
range contributions to B. We then compare the magnitude and
temperature dependence with those for Bgas and those for B for
a model solute that has a short-range, repulsive pair potential.
We also seek for a simple relation between B and some other
quantity that can be obtained with less computational effort.

II. MODEL AND SCHEME

Molecular dynamics simulations of an aqueous solution of
methane have been performed with the following model
system. The model water is the TIP4P/200521 with the LJ
potential truncated at 9 Å; the long-range Coulomb interaction
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is treated by the Ewald sum with a real-space cutoff of 9 Å. The
pair potential for methane is of the united-atom Lennard-Jones
(LJ) with the energy and size parameters22 ε2 = 1.2301 kJ/mol
and σ2 = 3.73 Å, which gives accurate Bgas(T) for methane. The
pair potential for methane−water interactions is the LJ function
with the parameter set proposed by Docherty et al.:23 ε12 =
1.043 kJ/mol and σ12 = 3.4445 Å. The potential models for
water−water and methane−water interactions employed here
reproduce with remarkable accuracy the density of pure water21

and the solubility of methane in water over a wide temperature
range at 1 bar.23 It is also known that for a given water model
the solvent polarizability has a smaller effect on the methane−
methane correlation function than does the structure of the
water model.24 The model system employed here may
therefore be one of the best to reproduce equilibrium
properties of an aqueous solution of methane.
The scheme for calculating B from the correlation-function

integral (eq 2) consists of three steps. The first is to calculate
with greatest possible accuracy the solute−solute radial
distribution function g(r) [=h(r) + 1] by performing molecular
dynamics simulations of the dilute solution. For the integral
∫ h(r) dτ to converge, it is necessary that g(r) → 1 as r → ∞.
For a closed system, however, the radial distribution function
gN(r) converges to 1 − c/N < 1, with N being the number of
solute particles and c an intensive quantity, as derived by
Lebowitz and Percus25 and recalled by Kezǐc ́ and Perera.26 If
the system size is sufficiently large and the solute−solute pair
potential is of short-range, then gN(r) oscillates around a
constant value for r less than half the dimension of the cell. The
constant c is then determined by the condition
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not be diverging with increasing the upper limit R of the
integral. The resulting gN(r)/[1 − c/N] is the g(r) with the
correct asymptote 1. Furthermore, it must be confirmed that
g(r) is independent of the concentration of the solute
molecules and of the system size. Then, one may assume that
g(r) is essentially the same as that at infinite dilution, which is
required for calculating B. There is a simple, efficient trick of
minimizing the effect of finite concentrations of solute particles
on g(r), as we employed in this work: that is to replace the LJ
potential ϕ(r) for the methane−methane interaction by the
repulsive Weeks−Chandler−Andersen (WCA) potential
ϕWCA(r) in the simulation, while keeping all the other
potentials the same. Because the purely repulsive WCA
particles have less tendency to aggregate into a cluster in the
solution, one can obtain the concentration-independent
gWCA(r) at concentrations higher than those required for the
original system. Once the infinite-dilution limit of gWCA(r) is
obtained, one has the corresponding g(r)

= ϕ−g r g r( ) ( )e r kT
WCA

( )/attr (3)

where ϕattr(r) = ϕ(r) − ϕWCA(r), the attractive part of the
WCA potential.
In the second step, with h(r) = g(r) − 1 now obtained, one

calculates the short-range contribution to B from the finite
range 0 < r < rc:

∫π= −B r h r r r( ) 2 ( ) d
r

short c
0

2c

(4)

In Figure 1, Bshort at 298 K and 1 bar is plotted as a function of
rc the upper limit of the integral. Note that, even for rc greater
than 15 Å, Bshort still oscillates.

The third step is to calculate the long-range contribution to
B. Although h(r) is obtained by molecular simulation up to a
fairly large distance rc with great accuracy, h(r) beyond r = rc is
required for calculating the long-range contribution

∫π= −
∞

B r h r r r( ) 2 ( ) d
r

long c
2

c (5)

What is proposed here is to use an exact asymptotic expression
for the pair correlation function between particles with short-
range interactions derived by Evans et al.27

θ= −ξ−r h r A ar( ) e cos( )r
WCA

/
(6)

where the subscript WCA anticipates an application to the
WCA solute particles, although eq 6 is valid for any short-
ranged pair potential. The parameters A, ξ, a, and θ are
determined by fitting eq 6 to the numerical data for the WCA
solute particles in water obtained in the first step. The range of
r for fitting must be where r is large enough for the asymptotic
form (eq 6) to be valid and the numerical data are accurate
enough for fitting of rhWCA(r). In practice, we have chosen the
range of r between the third and fifth minima in hWCA(r).
Figure 2 shows hWCA(r) obtained from simulation and the
asymptotic form (A/r)e−r/ξ cos(ar − θ) with the parameters
fitted to the data. The fit is very good from r = 12 Å, the
distance of the third minimum in hWCA. Oscillations in hWCA are
visible up to 20 Å, which manifests itself in Bshort in Figure 1.
With eq 6 and the exact relation between h(r) and hWCA(r)

(an analogue of eq 3), the long-range contribution (eq 5) to B
is numerically calculated. An example of Blong(rc) is shown in
Figure 1 (the dotted line). Since the asymptotic form (eq 6) for
hWCA(r) is only valid for large r (in practice, r ≳ 12 Å), Blong(rc)
is valid only for large rc. It may be emphasized here that
Blong(rc) includes the contribution of the direct pair potential
ϕ(r), which decays as 1/r6 at large r, and that of the solvent-
induced potential, both from the infinite range rc < r < ∞.
Finally, one has the full integral (eq 2)

= +B B r B r( ) ( )short c long c (7)

This B should be independent of rc if Blong(rc) is accurately
evaluated from eq 6. Figure 1 shows Bshort(rc) + Blong(rc) as a

Figure 1. The short-range and long-range contributions to B: Bshort(rc)
(solid line), Blong(rc) (dotted line), and the sum (solid line with dots).
T = 298 K and p = 1 bar.
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function of rc. One can see that, for rc ≳ 12 Å, the sum is nearly
constant, while each of the two terms still oscillates with
increasing rc. The sum at any rc in this range may therefore be
taken to be the B we wished to calculate.
We performed isobaric−isothermal molecular dynamics

simulations of dilute aqueous solutions of methane at eight
thermodynamic states along the isobar of 1 bar between 238
and 373 K, as listed in Table 1: two supercooled states (238

and 258 K) and six stable states from 278 K to the boiling point
of water. The simulations were done with GROMACS
(GROningen MAchine for Chemical Simulations)28 and the
model potentials described above. The pressure−temperature
control was implemented by the Nose−́Hoover method. The
system size and the solute concentration were carefully chosen
from preliminary simulations so that the solute−solute g(r) is
unchanged as the size is increased or the concentration is
decreased: the numbers of solvent and solute molecules are,
respectively, Nw = 4000 and N = 48. This concentration is
higher than those of methane in liquid water with its vapor at 1
bar, but we have confirmed that g(r) is independent of N if N ≤
80. The net simulation length for production runs is 400 ns at
238 K and 100 ns at higher temperatures.

III. RESULTS AND DISCUSSION

In Figure 3, plotted are g(r) and w(r)/kT for methane pairs in
water at the eight different temperatures. These are the input
data to calculate Bshort. It is clearly seen that the higher the
temperature, the higher the first peak in g(r) and the lower the
first minimum in w(r) (the position r1 of the first peak remains
to be 3.9 Å). See Table 1 for the values of g(r1). This
temperature dependence of g(r1), or that of the potential w(r1)
of mean force, has already been reported with different models
and methods;5,6,9−11 what we wish to see is how this feature of
g(r) is related with the osmotic second virial coefficient. The
g(r) obtained here is so accurate that one can also see that the
second and third peaks become higher and the second
minimum becomes lower with deceasing temperature. This
means that the calculation of Blong in eq 7 becomes important at
low temperatures.
Figure 4 shows the osmotic second virial coefficient B as a

function of temperature. Each point is the average of B in eq 7
over rc from 12 to 20 Å. The error bars are the maximum and
minimum values in the range of rc. In the supercooled states of
water at 238 and 258 K, it is found that B > 0, and so the net
effective interaction between methane molecules in water is
repulsive; around 273 K, B ≃ 0, i.e., the pair correlation is
superficially null; and finally at higher temperatures B < 0, and
so the net effective interaction is attractive. In the range of
temperature between 238 and 373 K, B monotonically
decreases from 63 to −81 cm3/mol with increasing temper-
ature.

Figure 2. The pair correlation function hWCA(r) for the WCA solutes
in water obtained by simulation (dots) and the exact asymptotic form
(solid line) (see eq 6). T = 298 K and p = 1 bar.

Table 1. The Osmotic Second Virial Coefficient B for the
Model Aqueous Solution of Methane and the First Peak
Height g(r1) of the Solute−Solute Radial Distribution
Function at r1 = 3.9 Åa

T (K) B (cm3/mol) g(r1)

238 63.0 1.64
258 29.7 2.08
278 −5.4 2.44
298 −26.6 2.86
318 −35.7 3.13
338 −52.2 3.35
358 −59.9 3.47
373 −81.0 3.61

aThe error bars in B are the same as those in Figure 4.

Figure 3. (a) The radial distribution function g(r) and (b) the potential w(r) of mean force for methane in water at 1 bar. The first peak of g(r) rises
and the first minimum of w(r) decreases with increasing temperature in the order 238, 258, 278, 298, 318, 338, 358, and 373 K.
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There are several earlier results on B of methane in water:
Watanabe and Anderson’s estimate from solubility measure-
ments of the gas is B = −20 cm3/mol at 298 K;2 Kennan and
Pollack’s results from the same thermodynamic formula with
different experimental data are B = 6.5 or −112 cm3/mol;15 and
Lüdemann et al. obtained B = −16 cm3/mol at 300 K from the
correlation-function integral over a finite distance.7 Our
estimate from the full correlation-function integral (eq 7) is B
= −27 cm3/mol at 298 K.
We also note that B for methane at 298 K is of the same

order of magnitude as our earlier estimate for propane (−41
cm3/mol) from the correlation-function integral,20 but the
former is less negative than the latter. There are two opposing
reports on the solute-size dependence of B: B decreases with
increasing molecular size of solute8,15 and its opposite.2 Our
results for methane and propane support the former.
In a dilute aqueous solution, if one cannot notice the solvent,

one would find that methane molecules interact with each other
via w(r), the potential of mean force, instead of via the pair
potential ϕ(r) in the gas phase, and so the osmotic B is
equivalent to Bgas for molecules interacting with w(r) in a
vacuum. That is the conclusion of the McMillan−Mayer theory
(eq 1). It may then be worth comparing B with Bgas in order to
quantify the effect of the solvent on the pair potential. In Figure
5 are plotted B and Bgas together as functions of temperature.
The curve is Bgas(T) calculated for the model methane gas, and
the three dots along the curve are experimental data. At 238 K,
the lowest temperature examined, B and Bgas are of the same
magnitude but their signs are opposite, and as T increases, the
decreasing B and increasing Bgas cross each other at around 318
K with a value close to −36 cm3/mol, and then at 373 K, B
(<0) becomes 4 times larger in magnitude than Bgas (<0),
indicating that the hydrophobic attraction is indeed very strong
at high temperatures.
We shall now examine the effect of the direct attractive

potential ϕattr(r) between solute molecules, which is now ϕ(r)
− ϕWCA(r). The triangles in Figure 5 show the osmotic second
virial coefficient BWCA of the WCA solute particles. Note that
BWCA > 0 in the temperature range is larger than B for methane
at any given temperature. This illustrates that the attractive part
of the direct pair potential has a significant contribution to B.
The difference is about 110 cm3/mol at any T; i.e., B(T) and
BWCA(T) are nearly parallel to each other. One may then
conclude that the effect of the direct attractive potential ϕattr on

the temperature dependence of B is much smaller than the
solvent-induced effect.
The difference BWCA − B ≃ cm3/mol comes solely from the

difference in the solute−solute pair potential: ϕ(r) − ϕ(r)WCA.
The effect of solute−solvent attractive interaction is not
examined here, but previous theoretical studies have already
demonstrated that the weaker the attractive solute−solvent
interaction the stronger the attractive solvent-induced inter-
action between solute molecules.1,4,14 Then, if the solute−
solvent pair potential is also purely repulsive as the solute−
solute potential, BWCA would be less positive than it is now and
could be negative in a wide range of temperatures. It is worth
calculating B for such solutes as they are similar to cavities in
water whose effective interactions have been studied by the
information-theory model.12,13

As illustrated above, to obtain B from g(r), one must have
g(r) with significant accuracy up to large distances where the
oscillations in g(r) are vanishingly small. It would then be of
great value if there is a simple relation between B and the first-
peak height of g(r), for the latter may be obtained easily and is a
simpler measure of the effective attraction. The distance r1 at
which the first peak is found is r1 = 3.9 Å for all the
temperatures and for the methane and WCA solutes. We saw
that g(r1) increases and B decreases with increasing temper-
ature, as shown in Figures 2 and 3, respectively, and as listed in
Table 1. That is also true for the WCA solute in water. In
Figure 6 are shown the plots of B against g(r1), both for
methane in water and for the WCA solute in water. These are
nearly linear over the temperature range, and for the two solute
models are nearly parallel and close to each other. The linear
relation between B and g(r1) for methane is

σ = − +B g r/ 2.15 ( ) 5.41 (methane)3
1 (8)

and that for the WCA solute is

σ = − +B g r/ 2.60 ( ) 7.41 (WCA)3
1 (9)

with σ = 3.73 Å, the LJ size parameter for the solute molecules.

IV. SUMMARY
A scheme for calculating the osmotic second virial coefficient B
of small solute molecules in a solvent was proposed and applied
to the model system of an aqueous solution of methane. The

Figure 4. The osmotic second virial coefficient B for methane in water
at 1 bar. The error bars indicate the maximum and minimum values of
B as a function of rc in eq 7 in the range 12 Å ≤ rc ≤ 20 Å: they are
smaller than the circles at high temperatures.

Figure 5. Comparison of B for methane in water (circles) with the
second virial coefficient Bgas for methane (line, calculation; dots,
experiment) and the osmotic B for the WCA solute particles in water
(triangles). The error bars for B for methane and the WCA solute (not
shown) are the same as those in Figure 4.
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full correlation-function integral (eq 2) is calculated as a sum of
Bshort and Blong, the short-range and long-range contributions to
B, where Bshort is calculated from an accurate infinite-dilute limit
of h(r) obtained by molecular dynamics simulation while Blong
is from the exact asymptotic form of h(r) derived by Evans et
al.27 It was shown that evaluation of Blong is important at low
temperatures because then oscillations in h(r)r2, which is to be
integrated over r, are appreciable even at the largest distance
accessible by the molecular simulation of an aqueous solution
containing 4000 water molecules. It was demonstrated that B
for methane in water is positive for supercooled water, zero
around the freezing point, and negative at higher temperatures,
as monotonically decreasing with increasing temperature. The
osmotic B for methane in water is equal to Bgas for gaseous
methane at around 320 K, below which B > Bgas and above
which B < Bgas. In this sense, the hydrophobic interaction is less
attractive than the pair interaction of the gas at low
temperatures and it is much more attractive than the gas-
phase interaction near the boiling point of water. The osmotic
BWCA for the WCA solute particles, which have no direct
attraction among them, is larger than B by about 110 cm3/mol,
but the temperature dependences are nearly the same as that of
B. Finally, it was found that the relation between B and g(r1),
the first-peak height of the solute−solute radial distribution
function, is nearly linear both for the methane solute and for
the WCA solute. It would be of great value if validity of the
linear relation is found for a large class of solutions.
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