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Abstract

A series of molecular dynamics simulations is performed in order to examine in more detail
the results of a previous simulation which shows that a thin 4lm of water, when con4ned to a
hydrophobic slit nanopore, freezes into a bilayer ice crystal composed of two layers of hexagonal
rings. Three simulations are carried out and each starts with a di6erent initial con4guration but
has the same number of molecules and the area density. Using a previously introduced solid-like
cluster de4nition, we monitor the dynamic process of crystallization. We 4nd that only in one
case the con4ned water completely freezes into perfect bilayer of ice whereas in other two cases,
an imperfect crystalline structure consisting of hexagons of slightly di6erent shapes is observed
and this imperfection apparently hinders the growth of perfect bilayer of crystal. After adjusting
the area density to match spatial arrangements of molecules, the latter two systems are able to
crystallize completely. As a result, we obtain three forms of bilayer crystal di6ering in the area
density and hexagonal rings alignment. Further analyses of these bilayer crystals provide more
insightful explanation on the in<uence of the boundary condition and the simulation-cell size on
the diversity of possible crystallographic structures.
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1. Introduction

In addition to a rich phase behavior and large number of crystalline and amorphous
structures of bulk water, many interesting structures and phenomena in con4ned water
has been reported [1–4]. The evidence for rich phase behavior of con4ned water comes
mostly from computer simulations and is yet to be con4rmed experimentally. Tools of
computer simulation have proven very useful to obtain deeper insight into the complex
behavior of con4ned <uids. In particular, computer simulations for water enable us to
understand on the molecular level the cooperativity of hydrogen bonding, solvation,
and hydrogen bond network rearrangement dynamics. Moreover, computer simulations
also allow us to study metastable states of supercooled water (like low density and
high density amorphous [5]) under conditions that are either expensive or diKcult to
achieve in laboratory experiments. Some new phases and new features of metastable
water have been found from computer simulations.
Recently, we performed a series of MD simulations of liquid–solid phase transition of

con4ned TIP4P water [6,7] in a narrow slit composed of two parallel hydrophobic walls
[1,8,9]. The width of the slit is about one nanometer, just enough to accommodate two
layers of water molecules at certain densities. When lowering the temperature of the
system at a 4xed load (the pressure exerted on a wall by the molecules in the system),
the water undergoes a phase transition from liquid to solid phase. It is found [1] that the
resulting solid phase is a crystalline ice, namely, a bilayer ice crystal. The structure
of the bilayer ice resembles none of the known structures of the ice polymorphs.
Nevertheless the ice crystal still retains basic features of bulk ices. For example, every
molecule is hydrogen bonded to four nearest-neighbor molecules. Each layer of ice is
composed of slightly distorted hexagonal rings (but still very <at compared to those in
ice Ih or Ic), and the two layers are completely in registry.
Another simulation was carried out at slightly di6erent conditions, i.e., at constant

lateral pressure rather than constant load and that, revealed another kind of phase
behavior. On cooling, the water transforms into a bilayer amorphous phase with a
perfect network but without long-range order [2]. Recently, we also reported formation
of several quasi-one-dimensional solid structure (ice nanotubes) inside of carbon
nanotubes [3].
In a previous study [9], we found that starting from various initial liquid con4gura-

tions (of the same density), we can prepare crystals which di6er in density and topol-
ogy. The observation seems to be related to the use of periodic boundary conditions.
This paper is a complementary study aiming at (i) describing and classifying possible

crystal topologies in a more mathematical language, replacing a few not very clear
arguments used in Ref. [9], and (ii) discussing the thermodynamics and calculating the
normal pressure pro4le for the system.

2. Simulation and structure analysis

We performed three molecular dynamics (MD) simulations of water con4ned to a
space between two plane parallel structureless walls, at 4xed temperature (T =253 K)



J. Slov5ak et al. / Physica A 319 (2003) 163–174 165

and 4xed load (Pz = 1 GPa). The water molecules interact with each other via TIP4P
potential and with the two walls via the 9–3 Lennard–Jones potential. The long-range
water–water potential is smoothly truncated at 8:665 QA. The simulation cell is a rectan-
gular prism with lateral dimensions Lx =65:01 QA and Ly =65:684 QA, thus keeping the
area density 	A=N=A=N=LxLy 4xed. The con4ned system consists of a 4xed number of
water molecules N =896. The distance between the walls, Lz, is about 1 nm. Periodic
boundary conditions are imposed in the x and y directions. To generate distinct initial
con4gurations, we use con4gurations stored during a simulation at T =257 K at which
the system is well equilibrated and never shows a tendency towards freezing (at least
not within our computer simulation time scale). We select three distinct con4gurations
in the course of simulation, which are separated by a time lag of about 2 ns. For other
details see Ref. [9].
Every instantaneous con4guration generated in the MD simulation entails a vibra-

tional displacement from a local minimum of the potential energy hypersurface. The
potential energy of an instantaneous con4guration (hereafter called I-structure) has two
contributions: the potential energy of the minimum-energy structure, and the thermal
excitations. The minimum-energy structures are referred to as the quenched structures
(Q-structures [10–12]) and can be obtained by using the steepest descent method. The
Q-structures provide useful information about the structure in con4guration space and
the geometry of molecular arrangement in solid state.
We characterize the solid state and solid-like regions in terms of hexagonal

cells. The hexagonal cell is considered to be an elementary unit of the bilayer
crystalline structure. It is composed of a pair of coupled hexagonal rings of hydro-
gen bonded molecules, i.e., a hexagonal ring in one layer with its counterpart in
another.
Hereafter we will refer to our three simulations as S1, S2 and S3. In the course of

simulation S1 the system freezes into a crystal composed of 224 hexagonal cells. The
crystal appears at about t=10:5 ns and apparently is stable during the next 2:5 ns, only
occasionally breaking up few of the hydrogen bonds. The crystallization processes in
S2 and S3 are however found to be quite di6erent from that in S1. Quite a large portion
of the system crystallizes but the simulations never end up in a complete crystal within
the simulation time scale. A closer look at the con4gurations reveals that the hexagonal
cells line up in slightly di6erent directions compared to those in S1 and have slightly
di6erent shapes: the hexagons do not have exactly the same inner angles as those in
S1. This yields heterogeneity in spatial distribution of molecules or, in other words,
a small liquid-like patch somewhere in the middle of the simulation box. If certain
number of molecules are removed from or inserted to the liquid-like hole, the process
of crystallization would complete successfully. In the case of S2 we observed a crystal
composed of 218 hexagonal cells (872 molecules) which seems to be perfectly stable
after its formation. In the case of S3, after adding certain number of molecules, we
obtained a crystal composed of 228 hexagonal cells (912 molecules) which again is
very stable after its formation. For more details on the simulation and discussion we
refer our reader to Ref. [9]. Fig. 1 shows how the molecules are arranged in the bilayer
crystal (after quenching). The picture corresponds to S2 but looks nearly the same as
those in S1 and S3.
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Fig. 1. Typical example of spatial arrangement of molecules in a 4nal con4guration in simulation S2.

We generated three bilayer crystals with di6erent densities, each one being perfectly
stable. In all three cases the crystal is composed of alternating rows of type-A hexagons
and type-B hexagons. The two hexagons di6er not only in chirality but also in the
inner angles and side lengths. The direction of the rows is also di6erent. But there
are always only two types of hexagons. Fig. 2 schematically shows the geometry of
the two hexagons. The numerical values of inner angles and side lengths are given
in Table 1. The two bilayer-ice rules hold for the crystals: (1) The HOH angle can
only be superposed over angles �A; �B; (2) when one OH bond of water molecule
is normal to the hexagonal lattice plane, the other OH bond can point only along a
direction adjacent to the �A and �B angle edges. Note also that not every hexagonal
ring has the exact shape as depicted in Fig. 2, which is averaged over large number
of con4gurations. All the angles given in Table 1 are within error ±2 QA and the side
lengths within error ±0:02 QA. The residual entropy of the bilayer ice can be estimated
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Fig. 2. Geometry of the hexagonal rings in the bilayer ice crystal.

Table 1
Arrangement and geometry of hexagonal rings in a crystal. A and B denote two types of hexagons which
generally occur in the resulting structure. l stands for longer sides and s for shorter sides of hexagons

Simulation �A �A �A �B �B �B l s

I 117.5 108.5 134.5 108.0 117.5 134.5 2.73 2.73
II 112.5 110.0 137.5 115.0 112.5 132.5 2.78 2.75
III 115.5 105.5 139.0 107.5 115.5 137.0 2.72 2.72

with high precision

Sbilayer = kB ln 2N=4 ; (1)

where kB is Boltzmann constant and N number of molecules.

3. Results and discussion

3.1. Periodic boundary conditions

In this section we show that the crystals S1–S3 do di6er not only in the density but
also in their topology which is clearly dictated by the periodic boundary conditions.
Let us illustrate the fact based on the example of S3 structure. Fig. 3(a) shows the
xy—projection of the crystal. As we have already mentioned, the structure is composed
of alternating rows of hexagons of two types. The solid lines connect the centers of
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Fig. 3. The 4nal crystalline structure for simulations S3 (a), and S2 (b), (xy projection). The solid lines
highlight the rows of hexagons of a speci4c type. The dashed line connects two subsequent rows.
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neighboring hexagons of one type and we can see 8 lines corresponding to 8 rows of
the hexagons. Due to the periodic boundary conditions, once a line reaches the right
side of the simulation box, it emerges again on the left side, which is depicted by
the dashed horizontal line. In this case, the continuation of a line (or its image in the
base replica of simulation cell) corresponds to neighboring row of hexagons. But it
is a very special case, incidentally. Fig. 3(b) shows the projection of S2 crystal and
here the successive solid lines correspond to rows separated by two intermediate rows.
The topology of S2 is thus di6erent, S2 and S3 cannot be mapped onto one to another
unless the periodic boundary conditions are removed.
Let us express the fact in a mathematical language. The set of lines connecting the

centers of hexagons is described by the mapping

x �→ [X; Y ]; X =mod(x; Lx); Y =mod(ax + b; Ly) (2)

of the interval 〈0; nLx〉 into the rectangle 〈0; Lx〉 × 〈0; Ly〉, a ≡ mLy=nLx, m; n are
integers, and b is a constant. Actually the above mapping is correct in the case when
m; n are comprime numbers. Theoretically m; n need not to be comprime (or the rows
can be horizontal or vertical), although none of our three observed structures falls into
the special category. In such special cases, mapping (2) is di6erent but what remains
true is the fact that a speci4c topology of a crystalline structure is fully described by
two numbers. There is one-to-one correspondence between the pair of numbers (|m|; n)
and the topology. The con4gurations (m; n); (−m; n) are topologically equivalent (with
mirror symmetry). The higher one of the two numbers |m|; n has the meaning of the
total number of hexagonal rows. For S1, (m; n) = (4; 7), for S2 (m; n) = (−7; 3) and
for S3 (m; n) = (1; 8). Each of the three con4gurations is di6erent. The total number
of hexagon rows is either 7 or 8. This is a typical number and it cannot be arbitrary
for physical reasons. Although the densities of the crystalline structures di6er slightly,
they must lie in certain range, too low or too high densities would inevitably lead to
the crystal destruction.
The existence of various crystalline structures has at least one unpleasant conse-

quence. In principle, we could extend our simulation algorithm to allow for change of
simulation cell, i.e., via scaling of sides and twisting [13] . It would be very useful
when looking for the minimal energy structures. The existence of crystals with various
densities and hexagon geometry seems unnatural. Unfortunately, due to the existence of
topologically non-equivalent structures, we cannot expect the simulations starting with
di6erent initial con4gurations to converge to the same result—single stable crystal with
a uniquely de4ned geometry and lowest potential energy. In this way we could only
4nd the lowest potential energy and geometry corresponding to a crystal with a speci4c
topology.

3.2. Thermodynamics and normal pressure

The computer simulations were performed at constant temperature T , number of
molecules N , area A=LxLy and load Pz. Here we describe the thermodynamics of the
system. The con4ned system is fully characterized by the variables S; H; A; N , where S
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is the entropy and H is the distance between the walls. The corresponding conjugate
(intensive) variables are T; Pz; Px;  .

The total di6erential of the internal energy U (variables S; H; A; N )

dU = T dS − APz dH − HPx dA+  dN : (3)

The total di6erential of the free energy F ≡ U − TS (variables T; H; A; N )

dF =−S dT − APz dH − HPx dA+  dN : (4)

The total di6erential of the grand potential # ≡ F −  N (variables T; H; A;  )

d# =−S dT − APz dH − HPx dA− N d : (5)

Now we can de4ne Gibbs potential G1 ≡ F + AHPx (variables T; H; Px; N )

dG1 =−S dT − ATP dH + AH dPx +  dN (6)

and Gibbs potential G2 ≡ F + AHPz (variables T; Pz; A; N )

dG2 =−S dT + AH dPz + HTP dA+  dN ; (7)

where TP = Pz − Px. It holds(
@G1

@N

)
T; H; Px

=
(
@G2

@N

)
T; Pz ; A

=  ; (8)

but only G1 is homogeneous function of the 4rst order in the variable N , i.e., G1 = N
(G2 =  N + AHTP, and #=−AHPx). Apparently, G2 is the thermodynamic potential
corresponding to the simulated system.
Physically, our system is realized as a part of an in4nite narrow slit, speci4ed by an

area A, whereas the remaining part of the slit plays a role of surrounding reservoir. The
system exchanges particles with the reservoir if needed (if  is 4xed rather then N ).
Thus the physical realization di6ers from the case in which a 4nite slit is immersed
in a bulk reservoir [14,15]. The bulk reservoir is very convenient when the equilib-
rium between the bulk and con4ned liquid is the main objective. The thermodynamic
relations in such a system slightly di6er from those in the in4nite slit [15].
Unlike other inhomogeneous systems in which the grand potential # is separated into

a bulk and an excess part, and the concept of Gibbs dividing surface is widely used, in
the actual realization we can rarely take any advantage of such separation. Generally,
the separation is sensible one if some part of the system exhibits bulk properties which
is, for example, in the case of a slit immersed in a bulk reservoir, or two bulk phase
interface, or a suKciently wide slit, but not in the case of a very narrow in4nite slit.
The solvation force f is now de4ned as

f = F=A=− 1
A

(
@#
@H

)
T; A;  

= Pz ; (9)

i.e., the solvation force is equal to the pressure Pz exerted on a wall by the molecules
in the system. This is slightly di6erent from the system opened to the bulk reservoir,
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in which the excess grand potential is used in (9) instead of the full grand potential
and f = Pz − pb, where pb is the bulk pressure (outside in the reservoir).

Apart from the load Pz and lateral pressure Px we can de4ne the pressure tensor P.
The pressure tensor is a local quantity and depends on the symmetry of the system. It
has two non-zero components, normal pressure pN and transverse pressure pT . They
are not completely independent as the condition of mechanical stability requires ∇P=0.
Both components are function of the coordinate z perpendicular to the walls.
The interaction potential v(z; L) between molecules of the system and planar walls

(located at z = 0 and z = L) can be written as

v(z; L) = vL J (z) + vL J (L− z) ; (10)

where vLJ (z) is 9-3 Lennard–Jones potential for z¿ 0 and vL J ≡ 0 for z¡ 0. The
relation

p′
N (z) =−	(z)v′(z) (11)

holds for normal pressure. 	(z) is the density pro4le of the molecules, which can be
calculated from computer simulations. Let pN (L=2) denote the normal pressure in the
middle of the slit and pN (0) = pN (L) the pressure on the walls. Then it holds [16]

TpN ≡ pN (L=2)− pN (0) =−
∫ L=2

0
	(z)v′L J (z) dz +

∫ L

L=2
	(z)v′L J (z) dz ; (12)

whereas the solvation force is

f =−
∫ L=2

0
	(z)v

′
L J (z) dz −

∫ L

L=2
	(z)v

′
L J (z) dz : (13)

Because we do not know pN (0) nor pN (L=2), we can only calculate the normal pressure
pro4le from (11) up to a constant. We set pN (L=2) = 0.
Actually, relation (11) is derived using the T; H; A;  ensemble and density functional

theory. But we performed the simulations at constant T; Pz; A; N which corresponds to
a di6erent ensemble. On the other hand, the density pro4les obtained from di6erent
ensembles at the same thermodynamic conditions must be identical. The calculation of
the density pro4le from the con4gurations stored during the TPzAN simulation only
requires proper normalization to the correct equilibrium distance L between the walls.
The density pro4le for the crystal S3 is shown in Fig. 4. The density pro4les for

S1 and S2 are slightly di6erent, yet hardly distinguishable from the one in Fig. 4.
The equilibrium distance between the walls is 9:0474 QA for S2, 9:0673 QA for S1 and
9:0846 QA for S3 crystal, i.e., increasing with increasing area density 	A. The peaks
are about the same height for all the crystals but they are slightly broadening with
increasing density.
If we calculate the solvation force (13) by numerical integration from the density

pro4le, we get f = 1:0006 GPa for S3, which is very close to the expected value
Pz = 1 GPa. If we calculate di6erence (12) for the same crystal we get 1:0672 GPa.
The normal pressure pro4le is plotted in Fig. 5.
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Fig. 4. Density pro4le of the molecules in the bilayer ice S3 as a function of distance (in QA) from a speci4c
planar wall.
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Fig. 5. Normal pressure pro4le (in GPa) in the bilayer ice S3 as a function of distance (in QA) from a speci4c
planar wall.
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The deviation of the numerically calculated solvation force never exceeds 0.5% of
the expected value 1 GPa in all three simulations. Considering the fact that the data
used to calculate the density pro4les were not too extensive (several hundreds con4g-
urations at best), it is surprisingly good agreement. The numerically calculated normal
pressure pro4les look very similar for each of the three crystals and the value TpN

seems to grow slightly inversely proportionally to the area density. Nevertheless this
result should be taken with care as the di6erence in TpN is so small that it can
be as well a consequence of poor statistics and limited amount of data available for
analysis.

4. Concluding remarks

A series of three MD simulations for a thin 4lm of water con4ned to a hydropho-
bic slit is performed in order to examine the in<uence of the initial con4gurations,
simulation cell size and periodic boundary conditions on crystallization process. At the
temperature T = 253 K the system freezes and a bilayer ice crystal is formed. The
crystal is composed of coupled hexagonal rings, so called hexagonal cells. Generally
two types of hexagonal cells can be detected, aligned in alternating rows. The resulting
crystals di6er in the density and the overall topology. They cannot be mapped onto
each to other by any continuous transformation. The topology can be easily described
by a pair of integers (m; n).
In order to calculate the normal pressure component of the pressure tensor we dis-

cuss 4rst the thermodynamics of the considered system and point out some di6erence
between the system and some similar systems considered so far in literature. The den-
sity pro4le in between the walls is evaluated from computer simulations. We de4ne
the solvation force and show that it is equal to the load Pz, i.e., the pressure exerted
by the molecules of the system on a wall. The solvation force is estimated by numer-
ical integration from the density pro4le and compared with the theoretical value. The
agreement is excellent, which demonstrates the compatibility of the theory with the
computer simulations. The normal pressure as a function of the distance from a wall is
not uniquely de4ned in our case but if the value of normal pressure in the middle of
the slit is 4xed, the normal pressure pro4le can be calculated by numerical integration
from the density pro4le. We 4nd out that the three generated crystals di6er not only
in the topology (which is purely an artifact of periodic boundary conditions) but also
in the equilibrium distance in between the walls, in the density pro4les and the normal
pressure pro4le, although all these di6erences are rather tiny.
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