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ABSTRACT: The second osmotic virial coefficient is calculated from
analytical equations of state as illustrated with the van der Waals two-
component equation. It is shown that when the fixed solvent chemical
potential or pressure at which the virial coefficient is calculated is taken to be
that of the pure solvent in coexistence with its vapor, as in a recent report, the
liquid solution is in a metastable state. When, by contrast, that fixed chemical
potential or pressure is that of the pure solvent in its one-phase liquid state,
the solution, with increasing solute concentration, is initially in a stable state;
then, on crossing the liquid−vapor equilibrium line, it becomes metastable and
ultimately approaches a spinodal and incipient instability. Nevertheless, in
practice, as seen in a numerical illustration for a hydrocarbon dissolved in
water, there is scarcely any difference in the virial coefficient calculated with
the fixed solvent chemical potential or pressure of the pure solvent at its vapor
pressure (metastable states of the solution) or at 1 bar (initially stable states). It is also seen in that example that the virial
coefficient may be reliably calculated only for solute concentrations that are neither too small nor too large; typically only for
mole fractions roughly from 10−7 to 10−3.5.

This is an extension of work reported in a recent paper,1 in
which there was illustrated the calculation of the second

osmotic virial coefficient from an analytical equation of state in
which the pressure p is given as a function p(ρ1,ρ2,T) of the
number densities ρ1 and ρ2 of solvent and solute, respectively,
and the temperature T. That virial coefficient B occurs in the
coefficient of the second-order term in an expansion of the
activity z2 of the solute in powers of ρ2 at fixed T and fixed
activity z1 of the solvent:2
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Σ
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The dimensionless Σ is a measure of the solubility of the solute,
closely related to the Henry’s-law constant and the Ostwald
absorption coefficient.
The activities z1 and z2 are exponential measures of the

respective chemical potentials μ1 and μ2 at the densities ρ1 and
ρ2; thus,

ρ= μ μ−z ei i
kT[ (i.g.)]/i i (2)

where k is Boltzmann’s constant and μi(i.g.) is what would be
the chemical potential of component i if it were at density ρi in
an ideal gas at temperature T.
By known thermodynamics, the activities z1 and z2 may be

obtained from p(ρ1,ρ2,T) as functions of those same
independent variables ρ1, ρ2, T. When z1 is then inverted as a
function of ρ1 and the resulting ρ1(z1,ρ2,T) is inserted for ρ1 in
the expression for z2, the result is z2 as a function of z1, ρ2, T.

This, by eq 1, may then be expanded in powers of ρ2 at fixed z1
and T, thus yielding the required osmotic virial coefficient B.
The commonly used equations of state p = p(ρ1,ρ2,T) are

analytic functions, not reconstructed by the common-tangent-
plane construction, so the ρ1 that results from the inversion of
z1 in the foregoing is generally multi-valued. One must choose
the root ρ1 that corresponds to the density of the solvent in the
liquid solution. As this is usually much the largest root, it is
easily identified. The inversion and the subsequent calculation
of B must, in practice, be done numerically.
In Figure 1, four curves are shown schematically in the z2, ρ2

plane at a fixed temperature. Those marked Lcoex and Vcoex
are the liquid and vapor branches of the coexistence curve at
that temperature. Those marked fixed z1 and fixed p are for the
liquid solutions in which z1 and p are fixed at their values in the
pure solvent at liquid−vapor coexistence. The three liquid
curves, Lcoex and those at fixed z1 and fixed p, share the same
initial slope 1/Σ, which, for low solubility solutes, is much
greater than 1, while the slope of the vapor curve Vcoex, if the
vapor is a dilute gas, is close to 1. There are also vapor branches
of the fixed z1 and fixed p curves that share with Vcoex the same
initial slope near 1.1 These are not relevant here and are not
shown in the figure.
The fixed z1 and fixed p curves in Figure 1 lie within the

region of liquid−vapor coexistence, so the homogeneous liquid
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solution in those thermodynamic states is metastable and
would ultimately separate into stable, coexisting liquid and
vapor. Nevertheless, the second osmotic virial coefficient in
those metastable liquid solution states is readily calculated by
the methods outlined above. That is what was done before,
using, for illustration, the van der Waals two-component
equation of state.1

In this note we do the analogous calculations for z1 or p fixed
at values such that, at high dilutions, the liquid solutions are in
stable rather than metastable states, and compare the resulting
values of the osmotic virial coefficient B with those found
earlier. It will be seen that, in practical cases, there is little
difference between them.
The reason for considering fixed-p representations of the

thermodynamic states of the solution as well as those of fixed z1
is because the coefficient B′ in the expansion of z2 in powers of
ρ2 at fixed T and p,

ρ ρ=
Σ
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1
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is closely related to B in eq 1, and B may be obtained from it:1,3

χ= ′ + −B B v kT
1
2

( )2 (4)

where v2 is the partial molecular volume of the solute at infinite
dilution in the liquid solvent, and χ is the compressibility of the
pure liquid solvent. Both v2 and χ are readily calculable from an
assumed p(ρ1,ρ2,T). The calculation of B′ proceeds as outlined
above for B except that now one inverts p(ρ1,ρ2,T) to obtain ρ1
as a function of p, ρ2, T instead of inverting z1(ρ1,ρ2,T). One
then substitutes the resulting ρ1(p,ρ2,T) for the ρ1 in
z2(ρ1,ρ2,T), which now becomes the function of p, ρ2, T
required for the expansion in eq 3.
In Figure 2a,b are shown, again schematically, the liquid−

vapor equilibrium line, now in the z2, z1 and z2, p planes at fixed
temperature. The stable states in the region above the

coexistence line, lying at higher z1 and higher p for any given
z2, are liquid; those below are vapor. The dashed horizontal
lines are states of fixed z1 in Figure 2a and of fixed p in Figure
2b. As one follows the upper of the two dashed lines in each
figure, starting from the pure solvent at z2 = 0, the liquid is the
stable phase and remains the stable phase until the coexistence
line is crossed, when it becomes metastable. With further
increase of z2 (increasing concentration of solute), with the
analytical equations of state, this metastable liquid ultimately
reaches its spinodal and becomes unstable. On the lower of the
two dashed lines in each figure, starting from the base of the
coexistence line at z2 = 0, the liquid phase is immediately
metastable and ultimately reaches its spinodal and becomes
unstable. These horizontal dashed lines that start at the base of
the coexistence line in Figure 2 (a) and (b) are, in a different
representation, the constant-z1 and constant-p curves in Figure
1. As remarked above, it is in these metastable states that B and
B′ were calculated in the earlier work.1

Osmotic virial coefficients of low-solubility gases in water are
conventionally calculated at 1 bar,4,5 which is higher than the
vapor pressure of water at any temperature below 373 K. Such
calculations are then for states represented by the upper of the
two dashed horizontal lines in Figure 2a,b. These states may
also be represented in the constant-temperature ρ2, z2 plane of
Figure 1, now in Figure 3, again schematically. The common
initial slope 1/Σ of the fixed z1 and fixed p curves in Figure 3 is
no longer exactly the same as that of the Lcoex curve. It is
shown here as greater; in practical cases it is only very slightly
greater.
If one contemplates a fixed-p expansion as in eq 3 (cf. Figure

2b), one specifies the fixed value of p (e.g., 1 bar) and the
temperature T, and then calculates the density ρ1 of the pure
solvent (ρ2 = 0) at that p and T from the assumed equation of
state p = p(ρ1,0,T). In the meantime, z2 had been obtained as a
function of ρ1, ρ2, T, so with the solvent ρ1 now known at ρ2 =
0, one may then identify the infinite dilution limit of z2/ρ2,
which is 1/Σ. Then B′ is obtained (usually numerically) from
eq 3. Alternatively, if one contemplates a fixed z1 expansion as
in eq 1 (cf. Figure 2a), but starting at infinite dilution at a
specified pressure (e.g., 1 bar), one calculates 1/Σ as above and
in addition, from the known z1 as a function of ρ1, ρ2, T, obtains

Figure 1. The ρ2, z2 plane at fixed temperature; schematic. The curves
marked Lcoex and Vcoex are the liquid and vapor branches of the
liquid−vapor coexistence curve. The curves marked fixed z1 and fixed
p are metastable liquid solution states in which z1 and p are fixed at
their values in the pure solvent (ρ2 = 0) at liquid−vapor coexistence.
The three liquid solution curves, Lcoex and those at fixed z1 and fixed
p, share a common initial slope 1/Σ, which for low solubility solutes is
much greater than 1, while the initial slope of the Vcoex curve, if the
vapor is a dilute gas, is close to 1. Not shown in the figure are
metastable vapor states at the same fixed z1 and p as in the liquid
states. These would share with Vcoex the same initial slope near 1.

Figure 2. The liquid−vapor coexistence curve LVcoex (shown here
schematically as a line) in the z2, z1 plane in (a) and in the z2, p plane
in (b), both at fixed temperature. Stable liquid states are those above
the respective coexistence curves, and stable vapor states are those
below. On the upper horizontal dashed line, at fixed z1 in (a) and at
fixed p in (b), are liquid states that start in the pure liquid solvent at z2
= 0, are stable liquid solutions up to the coexistence curve, and are
then metastable liquid solutions beyond. The liquid states on the lower
horizontal dashed line in each figure are those of mixtures that are
immediately metastable, starting at infinite dilution (z2 = 0).
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the infinite dilution limit of z1, now to be the fixed z1 in
question. One then obtains B (usually numerically) from eq 1.
To compare such values of B and B′ with those calculated

earlier in metastable states, we shall again use for illustration the
van der Waals two-component equation of state with the same
values of its parameters as before. This is a six-parameter
equation of state of the same form as its one-component
version, p = ρkT/(1 − bρ) − aρ2, but now with6

ρ ρ ρ= +1 2 (5)

ρ ρ ρ ρ ρ ρ= + + +a a a a( 2 )/( )1
2

11 1 2 12 2
2

22 1 2
2

(6)

ρ ρ ρ ρ ρ ρ= + + +b b b b( 2 )/( )1
2

11 1 2 12 2
2

22 1 2
2

(7)

For the six parameters aij, bij, we take the same values to
represent solutions of propane in water at 25 °C as taken before
for illustration;1 thus,

= ×

= ×

−

−

a

b

1.5038 10 erg cm ,

2.7538 10 cm
11

35 3

11
23 3

(8)

= =a a b b/ 1.6093, / 2.288712 11 12 11 (9)

= =a a b b/ 2.2015, / 4.096.22 11 22 11 (10)

These values of the parameters are to be treated as though
they are of infinite precision. One then specifies small values of
ρ2, calculates (numerically) the associated z2 by the procedure
outlined earlier, and then, with p = 1 bar at infinite dilution and
with the known Σ, obtains B or B′ as (z2Σ/ρ2 − 1)/(2ρ2) (cf.
eqs 1 and 3), as outlined above. There is a range of values of ρ2,
neither too large nor too small, over which the resulting B or B′
is independent of ρ2. Outside that range, the calculated B and
B′ are spurious. The reason the chosen ρ2 must not be too
small is that, within the precision of the calculation (e.g.,
carrying 10 digits), if ρ2 is too small, one cannot reliably
distinguish z2Σ/ρ2 from 1. The reason ρ2 must not be chosen
too large is, first, higher order terms in the expansions (1) and
(3) may affect the results, and, second, one may have entered

too deeply into the metastable region and be approaching the
spinodal.
This is illustrated for the calculation of B in Figure 4, where

B/b11 is plotted against log10(b11ρ2). The plateau, where the

calculated B is independent of ρ2, extends roughly from b11ρ2 =
10−7 to 10−3.5. The coexistence line is crossed at around b11ρ2 =
10−4.5; at smaller ρ2, the liquid solution is in stable states, and at
larger ρ2 it is metastable. In this calculation, 10 digits were
carried. (With 20 digits, say, the plateau would have extended
to smaller ρ2 but not to larger.) Outside the range 10−7 < b11ρ2
< 10−3.5, the calculated values are increasingly unreliable, and by
10−8 at the low end and 10−2 at the high end they have become
essentially meaningless.
The b11ρ2 in Figure 4 may be thought of as roughly the mole

fraction x2 of the solute. That is because the solutions are very
dilute, so x2 = ρ2/(ρ1 + ρ2) ≃ ρ2/ρ1 = b11ρ2/b11ρ1; while the
solvent is a dense liquid, so b11ρ1 is not far from 1.
The plateau value of B/b11 in Figure 4 is −34 (so, from eq 8,

B for propane in water at 25 °C is estimated to be −570 cm3/
mol). To these two significant figures, it is the same as found
before,1 when the fixed z1 was that of water coexisting with its
vapor at 25 °C so that the solution with any ρ2 > 0 was
metastable. The reason it has made so little difference is that
the dense liquid solvent is so nearly incompressible that it
hardly matters whether the fixed z1 is that of the pure solvent at
1 bar or at its much lower vapor pressure.
Likewise, one calculates B′/b11 = −36, again the same to two

significant figures as in the earlier calculation.1 It may be
verified from the equation of state that, to this precision, the
resulting B − B′ = 2b11 satisfies the identity in eq 4.
We have thus confirmed that in practical cases, for the

calculation of the second osmotic virial coefficient, it matters
little whether it is calculated in fully stable or in metastable
states of the solution.
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Figure 3. As in Figure 1, but now with the fixed z1 and p both greater
than they are at liquid−vapor coexistence at the fixed temperature of
the figure; the common initial slope 1/Σ of those two curves is greater
than that of the Lcoex curve. The fixed z1 and fixed p states are those
of stable liquid solutions for small z2 and ρ2, up to the intersections of
their curves with the Lcoex curve, and of metastable liquid solutions
beyond.

Figure 4. Calculated B/b11 as a function of log10(b11ρ2) for propane in
water at 25 °C. The liquid−vapor coexistence point lies somewhere
between b11ρ2 = 10−5 and 10−4. At lower ρ2 the liquid phase is stable,
at higher ρ2 it is metastable. The spinodal lies somewhere between
b11ρ2 = 10−2 and 10−1.
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