Publication

 
  1. 78Efficiency at maximum power for an isothermal chemical engine with particle exchange at varying chemical potential

  2. J. Koning, K. Koga, J.O. Indekeu,

  3. The European Physical Journal Special Topics 226, 427-431 (2017).


  4. 77Influence of co-non-solvency on hydrophobic molecules driven by excluded volume effect

  5. K. Mochizuki, T. Sumi, K. Koga,

  6. Phys. Chem. Chem. Phys. 19, 23915-23918 (2017).


  7. 76Hydrophobic Polymer Chain in Water That Undergoes a Coil-to-Globule Transition Near Room Temperature,

  8. I. Hatano, K. Mochizuki, T. Sumi, K. Koga,

  9. J. Phys. Chem. B, 120, 12127-12134 (2016).

  10. http://doi.org/10.1021/acs.jpcb.6b08347


  11. 75A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution

  12. Tomonari Sumi, Yutaka Maruyama, Ayori Mitsutake, Kenichiro Koga,

  13. J. Chem. Phys., 144, 224104 (15pp), (2016)

  14. http://dx.doi.org/10.1063/1.4953191


  15. 74Cononsolvency behavior of hydrophobes in water + methanol mixtures

  16. Kenji Mochizuki and Kenichiro Koga,

  17. Phys. Chem. Chem. Phys., 18, 16188-16195 (2016).

  18. DOI: 10.1039/C6CP01496H published on 20 May 2016


  19. 73Density functional models of the interfacial tensions near the critical endpoints and tricritical point of three-phase equilibria (invited)

  20. K. Koga and B. Widom, 

  21. J. Phys.: Condens. Matter, 28, 244016 (12pp), (2016).

  22. http://doi.org/10.1088/0953-8984/28/24/244016 Published 26 April 2016


  23. 72Liquid-liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature

  24. K. Mochizuki, T. Sumi, and K. Koga

  25. Sci. Rep., 6, 24657-1-10

  26. DOI: 10.1038/srep24657 Published online:21 April 2016


  27. 71Driving forces for the pressure-induced aggregation of poly(N-isopropylacrylamide) in water

  28. K. Mochizuki, T. Sumi, and K. Koga

  29. Phys. Chem. Chem. Phys., 18, 4697-4703, (2016)

  30. DOI: 10.1039/C5CP07674A published 2016.01.14


  31. 70Mean-Field Approximation to the Hydrophobic Hydration in the Liquid–Vapor Interface of Water (invited)

  32. K Abe, T Sumi, K Koga

  33. J. Phys. Chem. B, 120, 2012-2019, (2016).

  34. DOI: 10.1021/acs.jpcb.5b10169 Publication Date (Web): November 23, 2015


  35. 69Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment

  36. K. Koga, V. Holten, and B. Widom

  37. J. Phys. Chem. B 119, 13391-13397 (2015).


  38. 68Solid-liquid critical behavior of a cylindrically confined Lennard-Jones fluid

  39. K. Mochizuki and K. Koga

  40. Phys. Chem. Chem. Phys.,  17 (28), 18437-18442, (2015).  DOI: 10.1039/C5CP02568K


  41. 67Solid−liquid critical behavior of water in nanopores

  42. K. Mochizuki and K. Koga, Proc. Natl. Acad. Sci. USA, 112, 8221-8226 (2015). DOI/10.1073/pnas.1422829112


  43. 66Local solubility of nonpolar molecules in the liquid–vapor interfaces of water and simple liquids

  44. K. Abe, T. Sumi, K. Koga, J. Mol. Liq. 200, 7-11 (2014).

  45. 65Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water
    K. Abe, T. Sumi, and K. Koga, J. Chem. Phys.,  141, 18C516-1-8 (2014).


  1. 64Local solubility of nonpolar molecules in the liquid-vapor interfaces of water and simple liquids
    K. Abe and K. Koga, J. Mol. Liq.  published on online: DOI: 10.1016/j.molliq.2014.02.014

  2. 63Osmotic Second Virial Coefficient of Methane in Water
    K. Koga, J. Phys. Chem. B,  117, 12619-12624 (2013).

  3. 62Renormalization group calculations for wetting transitions of infinite order and continuously varying order: Local interface Hamiltonian approach
    J. O. Indekeu, K. Koga, H. Hooyberghs, and A. O. Parry, Phys. Rev. E,  88, 022122 (2013).

  4. 61Thermodynamic functions as correlation-function integrals
    K. Koga and B. Widom,  J. Chem. Phys.,  138, 114504 (2013).

  5. 60Note on the Calculation of the Second Osmotic Virial Coefficient in Stable and Metastable Liquid States
    B. Widom and K. Koga,  J. Phys. Chem. B, 117,  1151-1154 (2013). http://pubs.acs.org/doi/abs/10.1021/jp311800p (2013).

  6. 59Inclusion of Neon Inside Ice Ic and its Influence to the Ice Structure
    L. Hakim, M. Matsumoto, K. Koga, and H. Tanaka
    J. Phys. Soc. Jpn. 81 (2012) SA018, (7 pages) [Full Text PDF FREE (397K)]

  7. 58Diffusivity of Liquid Argon in Carbon Nanotubes
    Hiroki Akiyoshi and Kenichiro Koga
    J. Phys. Soc. Jpn., 81 (2012) SA022  (8 pages)[Abstract] [Full Text PDF FREE (397K)]


  1. 57Model of Freezing Behavior of Liquid Monolayers Adsorbed in Cylindrical Pore
    Kiharu Abe and Kenichiro Koga
    J. Phys. Soc. Jpn., 81 (2012) SA021 (8 pages) [Abstract] [Full Text PDF FREE (374K)]


  1. 56Solvation of hydrophobes in water and simple liquids
    Kenichiro Koga,  Phys. Chem. Chem. Phys.,  13, 19749 (2011).


  1. 55Hydrophobicity in Lennard-Jones Solutions
    M. Ishizaki, H. Tanaka, and K. Koga, Phys. Chem. Chem. Phys.,  13, 2328-2334 (2011).


  1. 54Wetting transitions of continuously varying or infinite order from a mean-field density-functional theory
    K. Koga, J. O. Indekeu, and B. Widom, Mol. Phys., 109, 1297-1311 (2011).


  1. 53How much does the core structure of a three-phase contact line contribute to the line tension near a wetting transition?
    J. O. Indekeu, K. Koga, and B. Widom,
    Journal of Physics-Condensed Matter, 23, 194101 (2011).


  1. 52Thermodynamic stability of hydrogen hydrates of ice Ic and II structures
    L. Hakim, K. Koga, and H. Tanaka, Phys. Rev. B,   82, 144105 (2010).
    DOI:10.1103/PhysRevB.82.144105


  1. 51First- and Second-order wetting transitions at liquid-vapor interfaces
    K. Koga, J.O. Indekeu, and B. Widom, Faraday Discussions, 146, 217-222 (2010). 
    DOI:10.1039/b925671g

  2. 50Novel neon-hydrate of cubic ice structure
    L. Hakim, K. Koga, and H. Tanaka, Physica A, 389, 1834-1838 (2010).


  1. 49Phase behavior of different forms of ice filled with hydrogen molecules
    L. Hakim, K. Koga, and H. Tanaka, Phys. Rev. Lett., 104, 115701 (2010).


  1. 48Infinite-order transitions in density-functional models of wetting
    K. Koga, J. O. Indekeu, and B. Widom, Phys. Rev. Lett., 104, 036101 (2010).

  2. 47Augmented stability of hydrogen clathrate hydrates by weakly polar molecules
    T. Nakayama, K. Koga, and H. Tanaka, J. Chem. Phys., 131, 214506-1-10 (2009).


  1. 46Phase behavior and fluid-solid surface tension of argon in slit pores and carbon nanotubes
    Yoshinobu Hamada, Kenichiro Koga, and Hideki Tanaka, Physica A, 388, 2289-2298 (2009).

  2. 45A plastic phase of water from computer simulation
    Y. Takii, K. Koga and H. Tanaka, J. Chem. Phys., 128, 204501-1-8 (2008).

  3. 44Mean-field density-functional model of a second-order wetting transition
    K. Koga and B. Widom, J. Chem. Phys., 128, 114716-1-8 (2008).

  4. 43Phase diagram of water in carbon nanotubes
    Daisuke Takaiwa, Itaru Hatano, Kenichiro Koga, and Hideki Tanaka, Proc. Natl. Acad. Sci. USA, 105, 39-43 (2008).

  5. 42Phase equilibria and interfacial tension of fluids confined in narrow pores
    Yoshinobu Hamada, Kenichiro Koga, and Hideki Tanaka, J. Chem. Phys., 127, 084908-1-9 (2007).

  6. 41Line and boundary tensions on approach to the wetting transition
    K. Koga and B. Widom, J. Chem. Phys., 127, 064704-1-9 (2007).

  7. 40On the thermodynamic stability of hydrogen clathrate hydrates
    Keisuke Katsumasa, Kenichiro Koga, and Hideki Tanaka, J. Chem. Phys., 127, 044509-1-7 (2007).

  8. 39Structures of filled ice nanotubes inside carbon nanotubes
    D. Takaiwa, K. Koga, and H. Tanaka, Mol. Simulat., 33, 127-132 (2007).

  9. 38Line adsorption in a mean-field density-functional model 
    K. Koga and B. Widom, Mol. Phys., 104, 3469-3477 (2006).

  10. 37Theoretical studies on the structure and dynamics of water, ice, and clathrate hydrate
    H. Tanaka and K. Koga, Bull. Chem. Soc. Jpn., 79, 1621-1644 (2006).

  11. 36Close-packed structures and phase diagram of soft spheres in cylindrical pores  
    K. Koga and H. Tanaka, J. Chem. Phys., 124, 131103-1-4 (2006).

  12. 35Formation of ice nanotube with hydrophobic guests inside carbon nanotube 
    H. Tanaka and K. Koga, J. Chem. Phys., 123, 094706-1-6 (2005).

  13. 34Phase diagram of water between hydrophobic surfaces 
    K. Koga and H. Tanaka, J. Chem. Phys., 122, 104711-1-10 (2005).

  14. 33On the thermodynamic stability and structural transition of clathrate hydrates 
    Y. Koyama, H. Tanaka, and K. Koga, J. Chem. Phys., 122, 074503-1-10 (2005).

  15. 32Hydrophobic effect in the pressure-temperature plane 
    K. Koga, J. Chem. Phys. , 121, 7304-7312 (2004).

  16. 31On the thermodynamic stability of clathrate hydrates IV: Double occupancy of cages 
    H. Tanaka, T. Nakatsuka, and K. Koga, J. Chem. Phys., 121, 5488-5493 (2004).

  17. 30 Reply to Comment on The hydrophobic effect by G. Graziano 
    B. Widom, P. Bhimalapuram, and K. Koga, Phys. Chem. Chem. Phys., 2004, 6, 4529-4530.

  18. 29 The hydrophobic effect 
    B. Widom, P. Bhimalapuram, and K. Koga, Phys. Chem. Chem. Phys., 2003, 5, 3085-3093.

  19. 28Freezing in one-dimensional liquids
    K. Koga, J. Chem. Phys., 2003, 118, 7973-7980.

  20. 27Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes
    J. Bai, C.-R. Su, R.D. Ruben, X.C. Zeng, H. Tanaka, K. Koga, and J.-M. Li, J. Chem. Phys., 2003, 118, 3913-3916.

  21. 26Formation of quasi-two-dimensional bilayer ice in hydrophobic slit: A possible candidate for ice XIII
    J. Bai, X.C. Zeng, K. Koga, and H. Tanaka, Mol. Simulat., 2003, 29, 619-626.

  22. 25 Computer simulation of bilayer ice: structures and thermodynamics 
    J. Slovak, H. Tanaka, K. Koga, and X.C. Zeng, Physica A, 2003, 319, 163-174.

  23. 24 Correlation between Hydrophobic Attraction and the Free energy of Hydrophobic Hydration 
    K. Koga, P. Bhimalapuram, and B. Widom, Mol. Phys., 2002, 100, 3795-3801.

  24. 23 How does water freeze inside carbon nanotubes? 
    K. Koga, G.T Gao, H. Tanaka, and X.C. Zeng, Physica A, 2002, 314, 462-469.

  25. 22Solvation forces and liquid-solid phase equilibria for water confined between hydrophobic surfaces 
    K. Koga, J. Chem. Phys., 2002, 116, 10882.

  26. 21Formation of ordered ice nanotubes inside carbon nanotubes
    K. Koga, G.T. Gao, H. Tanaka, and X.C. Zeng, Nature, 2001, 412, 802-805.

  27. 20 Computer Simulation of Water -- Ice Transition in Hydrophobic Nanopores
    J. Slovak, and H. Tanaka, K. Koga, and X.C. Zeng, Physica A, 2001, 292, 87-101.

  28. 19Correlation functions in decorated lattice models
    I. Ispolatov, K. Koga, and B. Widom, Physica A, 2001, 291, 49-59.

  29. 18First-order transition in confined water between high-density liquid and low-density amorphous phases 
    K. Koga, H. Tanaka, and X.C. Zeng, Nature, 2000, 408, 564-567. (Nov. 30, 2000)

  30. 17Ice nanotubes: What does the unit cell look like 
    K. Koga, R.D. Parra, H. Tanaka, and X.C. Zeng, J. Chem. Phys., 2000 , 113, 5037-5040.

  31. 16Imaging point defects in a liquid environment: A model AFM study
    K. Koga and X.C. Zeng, Phys. Rev. B., 1999, 60, 14328-14333.

  32. 15Confined water in hydrophobic nanopores:  Dynamics of freezing into bilayer ice
    J. Slovak, K. Koga, H. Tanaka, and X.C. Zeng, Phys. Rev. E., 1999, 60, 5833-5840.

  33. 14 Can thin disk-like ice clusters be more stable than compact droplet-like ice clusters? 
    H. Tanaka, R. Yamamoto, K. Koga and X.C. Zeng, Chem. Phys. Lett. , 1999, 304, 378-384.

  34. 13Thermodynamic Expansion of Nucleation Free-Energy Barrier and Size of Critical Nucleus near the Vapor-Liquid Coexistence  
    K. Koga and X.C. Zeng, J. Chem. Phys., 1999, 110, 3466-3471.

  35. 12Validity of Tolman's Equation: How Large should a droplet be? 
    K. Koga, X.C. Zeng and A. K. Shchekin, J. Chem. Phys., 1998, 109, 4063-4070.

  36. 11 Study of Hydrophilic interactions between Polyatomic sheets in Water 
    K. Koga, X.C. Zeng and H. Tanaka, Fluid Phase Equil. , 1998, 144, 377-385.

  37. 10 Effects of Confinement on the Phase Behavior of Supercooled Water 
    K. Koga, X.C. Zeng and H. Tanaka, Chem. Phys. Lett. , 1998, 285, 278-283.

  38. 9Freezing of confined water: Bilayer ice phase in hydrophobic nanopores 
    K. Koga, X.C. Zeng and H. Tanaka, Phys. Rev. Lett. , 1997, 79, 5262.

  39. 8Scanning motions of an atomic force microscopy tip in water 
    K. Koga and X.C. Zeng, Phys. Rev. Lett. , 1997, 79, 853.

  40. 7Large Thermal Expansivity of Clathrate Hydrates 
    H. Tanaka, Y. Tamai and K. Koga, J. Phys. Chem. B, 1997, 101, 6560.

  41. 6Solvent-Induced Interactions between Hydrophobic and Hydrophilic Polyatomic Sheets in Water and Hypothetical Nonpolar Water, 
    K. Koga, X.C. Zeng and H. Tanaka, J. Chem. Phys. , 1997, 106, 9781.

  42. 5RISM Integral Equation Study of Local Solvation Behavior of Naphthalene in Supercritical Carbon Dioxide,
    K. Koga, H. Tanaka and X.C. Zeng, J. Phys. Chem. , 1996, 100, 16711.

  43. 4Rearrangement dynamics of the hydrogen-bonded network of clathrate hydrates encaging polar guest 
    K. Koga and H. Tanaka, J. Chem. Phys., 1996, 104, 263.

  44. 3Rearrangement of the hydrogen-bonded network of the clathrate hydrates encaging polar guest
    K. Koga, H. Tanaka and K. Nakanishi, Mol. Simulat., 1996, 16, 151.


  1. 2Stability of polar guest-encaging clathrate hydrates
    K. Koga, H. Tanaka and K. Nakanishi, J. Chem. Phys., 1994, 101, 3127.

  2. 1 On the stability of clathrate hydrates encaging polar guest molecules: Contrast in the hydrogen bonds of methylamine and methanol hydrates
    K. Koga, H. Tanaka and K. Nakanishi, Mol. Simulat., 1994, 12, 241.



Book

  1. 1.ナノマテリアルハンドブック 第6節3.ナノ空間内の水の構造と相転移 田中秀樹, 甲賀研一郎, ISBN4-86043-078-6 (エヌ・ティー・エス), 2005.

  2. 2.化学系の統計力学入門, B. Widom 著, 甲賀研一郎 訳, ISBN 4-7598-0950-3 (化学同人), 2005.

  3. 3.Phase Transitions in Confined Water
    K. Koga and H. Tanaka, in
    Water, Steam, and Aqueous Solutions for Electric Power --Advances in Science and Technology--- edited by M. Nakahara et al (Maruzen), ISBN46210759692005, pp.188-193.

  4. 4.Ice nanotubes inside carbon nanotubes
    K. Koga and H. Tanaka, in Encyclopedia of Nanoscience and Nanotechnology edited by J. A. Schwarz (Marcel Dekker), 2004, pp.1415-1424.

  5. 5.Phase Equilibria and Transitions of Confined Systems in Hydrophobic and Aqueous Environments
    H. Tanaka, K. Koga,   in V. Buch and J.P. Devlin [eds], Water in Confining Geometries (Springer-Verlag, 2003). ISBN: 3-540-00411-4

  6. 6.Water and ice in quasi-two-dimensional geometries --- Phase transitions, phase equilibria, and solvation forces
    K. Koga,     in V. V. Brazhkin. S. V. Buldyrev, V. N. Ryzhov, and H. E. Stanley [eds], New Kinds of Phase Transitions: Transformations in Disordered Substances [Proc. NATO Advanced Research Workshop, Volga River] (Kluwer,Dordrecht, 2002). ISBN: 1402008252

  7. 7.Phase behavior of water confined in a slit nanopore
    K. Koga, H. Tanaka, and X.C. Zeng, in Science and Technology of High-Pressure Research, 2000 pp.109-114, edited by Manghnani, Nellis, Nicol (ISDN: 81 7371338 3).

  8. 8. Statistical Thermodynamics Treatment of the AFM Tip in Liquid
    K. Koga, X.C. Zeng and D.J. Diestler, in Tribology Issues and Opportunities in MEMS, edited by B. Bhushan (Kluwer Academic, Dordrecht), 1998, 313-323. (ISBN 0-7923-5024-3)

総説, etc

  1. 1.Wetting Transitions at Fluid Interfaces and Related Topics
    K. Koga, Review of Polarography, 56, 3, (2010).  Link to JSTAGE

  2. 2.How soft interfaces get wet
    甲賀研一郎,物性研究 93-3, 301 (2009).

  3. 3.不均一液体の基礎理論(3)」, 甲賀研一郎,分子シミュレーション研究会会誌 アンサンブル, 9, no.3, 8-12 (2007).

  4. 4.不均一液体の基礎理論(2)」, 甲賀研一郎,分子シミュレーション研究会会誌 アンサンブル, 9, no.2, 45-48 (2007).

  5. 5.不均一液体の基礎理論(1)」, 甲賀研一郎,分子シミュレーション研究会会誌 アンサンブル, 9, no.1, 17-20 (2007).

  6. 6.「微小空間内部の水の構造と相転移」, 甲賀研一郎, 田中秀樹,現代化学, no.426, 24-30 (2006).

  7. 7.「不均一液体の構造と相転移」, 甲賀研一郎,分子シミュレーション研究会会誌 アンサンブル, 8, 4 (2006).

  8. 8.「包接水和物の熱力学安定性~空洞の多重占有~」, 田中秀樹,甲賀研一郎, 低温科学, 64, 183 (2005).

  9. 9. Computer Simulation of Water and Aqueous Solutions
    田中秀樹,甲賀研一郎, Cryobiology and Cryotechnology, 低温生物工学会誌, 2002, u>48,2-10.

  10. 10.「二次元氷の発見ー計算機シミュレーションが予言した特異な構造」
    (Discovery of two-dimensional ice - Peculiar structure predicted by computer simulation)
    甲賀研一郎, X.C. Zeng, 田中秀樹, 化学, 1999, 54, 41-46.

  11. 11.「過冷却水の液液相転移と疎水壁間における二次元氷の生成」
    (Liquid-liquid phase transition in supercooled water and formation of quasi two-dimensional ice between hydrophobic walls)
    田中秀樹,甲賀研一郎 表面, 1998, 36, 188-189.

  12. 12.「過冷却の水の相転移と水素結合のダイナミクス」
    (Phase transition of supercooled water and dynamics of hydrogen bonds)
    甲賀研一郎,田中秀樹, 化学, 1996, 51, 464-465.